
www.cea.fr

The Uranie platform

A broad introduction

J-B. Blanchard, on behalf of the Uranie team
jean-baptiste.blanchard@cea.fr

ETSN 2018 2018/04/25

Purpose of this presentation

Uncertainty at CEA/DEN are of interest for many purposes:
LEONAR tool for severe accidents in french nuclear reactor (CEA-EDF)
Sensitivity Analysis for Cathare code (Areva TA)
Multi-criteria optimisation (CEA CESTA/CELIA), Astrid. . .
European project NURESIM/NURISP

Uranie platform has been developped to deal with
Uncertainty propagation
Optimisation (Single/Multi objectives)
Sensitivity analysis
Surrogate modeling generation
Code calibration
. . .

What I’ve been asked by Renaud
Introduce the platform so that if people are interested they can get it and start playing with it.

Technical description of the platform (hopefully not to long)
⇒ to keep as a reference if anyone wants to give a shot (on top of the documentation)
Introducing a “toy-physical” use-case used throughout the rest
Go through main steps of a possible analysis.

2018/04/25 ETSN 2018 - J-B. Blanchard 2 / 82

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 3 / 82

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 4 / 82

The ROOT project

The ROOT platform

Developed at CERN to help analyse the huge amount of data delivered
by the successive particle accelerators

Written in C++ (3/4 releases a year)

Multi platform (Unix/Windows/Mac OSX)
Started and maintained over more than 20 years
It brings:
Ù a C++ interpreter, but also Python and Ruby interface
Ù a hierarchical object-oriented database (machine independent and highly compressed)
Ù advanced visualisation tool (graphics are very important in HEP)
Ù statistical analysis tools (RooStats, RooFit . . .)
Ù and many more (3D object modelling, distributed computing interface. . .)
LGPL

2018/04/25 ETSN 2018 - J-B. Blanchard 5 / 82

The ROOT project

Coding conventions

ROOT uses some unusual coding/naming conventions
Class names start with capital T: TH1F, TF1, TVector 4
Names of non-class data types end with _t: Int_t
Separate words with in names are capitalised: TH1::GetTitleOffset() 4
Class method names start with a capital letter: TH1F::Fill() 7
Class data member names start with an f: TH1::fXaxis 7
Global variable names start with a g: gPad
Constant names start with a k: TH1::kNoStats 4

All what will be discussed here, is dealing with ROOT-5 versions, unless
otherwise specified

2018/04/25 ETSN 2018 - J-B. Blanchard 6 / 82

The ROOT project: CInt, the C++ interpreter

C++ interpreter

First contact you’ll have with ROOT
Allows to write C++ line-by-line
Native prints variable-content when “;” is omitted
Provides syntax highlighting and simple auto-completion

Pros:
Very simple to use
Allows you to grope for what you really want
Provide an integrated compiler if one is not
familiar with C++ compilation

Cons:
Is slower than compiled C++
Allows strange code (forbidden by proper C++)
Has its own way to handle memory (delete are
risky)
All variables are global→ Restart CInt regularly

Good practice: you can play with it to test, but most of your work should
be done through scripts

Drastic changes once moving to ROOT6
� It becomes C++11 compliant
� CInt becomes Clang which compiles (on the fly) the provided code

Ù Much less differences with proper C++
Ù Induce changes for some of our constructor

2018/04/25 ETSN 2018 - J-B. Blanchard 7 / 82

The ROOT project: CInt, the C++ interpreter

A simple example

Interpreted scripts
{

TCanvas *Can = new TCanvas("Can","Can" ,2);
TF1 *f = new TF1("f","sin(x)/x", -20, 20);
f->Draw();
Can ->SaveAs("SinCar.pdf");

}

void ROOTSENamed ()
{

TCanvas *Can = new TCanvas("Can","Can" ,2);
TF1 *f = new TF1("f","sin(x)/x", -20, 20);
f->Draw();
Can ->SaveAs("SinCar.pdf");

}

20− 15− 10− 5− 0 5 10 15 20

0.2−

0

0.2

0.4

0.6

0.8

1

sin(x)/xsin(x)/x

2018/04/25 ETSN 2018 - J-B. Blanchard 8 / 82

The ROOT project: CInt, the C++ interpreter

A simple example

Compiled scripts
#include "TF1.h"
#include "TCanvas.h"

int main()
{

TCanvas *Can = new TCanvas("Can","Can" ,2);
TF1 *f = new TF1("f","sin(x)/x", -20, 20);
f->Draw();
Can ->SaveAs("SinCar.pdf");
return 0;

}

Python Equivalent

import ROOT

Can = ROOT.TCanvas("Can","Can" ,2);
f = ROOT.TF1("f","sin(x)/x", -20, 20);
f.Draw();
Can.SaveAs("SinCar.pdf");

20− 15− 10− 5− 0 5 10 15 20

0.2−

0

0.2

0.4

0.6

0.8

1

sin(x)/xsin(x)/x

2018/04/25 ETSN 2018 - J-B. Blanchard 8 / 82

The ROOT project: CInt, the C++ interpreter

TTree or how to store data

{
// Define constant
Int_t nbSteps = 1000;
Double_t xMin = -10.0, xMax = 10.0;

// Create the function
TF1 *myFunction = new TF1("function", "x*sin(x)",xMin ,xMax);
// Create a tree in which results will be stored
TNtupleD *myTree = new TNtupleD("tree", "Example", "x:y:index");

//Fill the tree
for(Int_t i = 0; i < nbSteps; i++)
{

Double_t v1 = xMin + i * (xMax -xMin)/nbSteps;
Double_t v2 = myFunction ->Eval(v1) + gRandom ->Gaus (0.0, 0.1);
myTree ->Fill(v1,v2 ,(Double_t)(i+1));

}

// Showing content
myTree ->StartViewer ();
myTree ->Scan("*");

}

2018/04/25 ETSN 2018 - J-B. Blanchard 9 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Producing plots and playing with style

2018/04/25 ETSN 2018 - J-B. Blanchard 10 / 82

The ROOT project: TTree, the way to handle data

Code lines to do the same

Everything can be done with code instructions, in a script.

// Drawing
gStyle ->SetTitleX (0.1); // Title Start
gStyle ->SetTitleBorderSize (1); // Border around title
// Create a canvas
TCanvas *Can = new TCanvas("can","can" ,1);
myTree ->Draw("y:x"); // Draw the graph

// Change Canvas property
Can ->SetLogy (); // Put log scale on y
Can ->SetGrid (); // Add the grid
// Put the weird background color
Can ->GetFrame ()->SetFillColor (29);

// Get the graph object
TGraph *gr = (TGraph *)Can ->GetPrimitive("Graph");
// Change marker color and size
gr ->SetMarkerColor (2);
gr ->SetMarkerStyle (6);

// Get the histogram object
TH2F *h = (TH2F*)Can ->GetPrimitive("htemp");
// Change title and Y axis title
h->SetTitle("Representation du log de f(x)=x*sin(x)

+ #epsilon_{N(0.0 ,0.1)}");
h->GetYaxis ()->SetTitle("x*sin(x)");

x
10− 5− 0 5 10

x*
si

n(
x)

1−10

1

N(0.0,0.1)∈Representation du log de f(x)=x*sin(x) +

2018/04/25 ETSN 2018 - J-B. Blanchard 11 / 82

The ROOT project: TTree, the way to handle data

Many sources for documentation

Online
Reference guide: https://root.cern.ch/root/html534/ClassIndex.html
Ù Details all the methods (inherited or not) of a given class
User-guide: https://root.cern.ch/root/html534/guides/users-guide/ROOTUsersGuideA4.pdf
Ù Description of what can be done from installation to high level usage. Nicely illustrated !
How-to: https://root.cern.ch/howtos
Ù Example to answer most answered questions
A dedicated forum: https://root-forum.cern.ch/
Ù Very reactive forum, to help people with the many different usage one can do with ROOT.

On your machine, once installed
User guide and manual: They are provided in markdown, ready to be compiled
Ù $ROOTSYS/documentation/users-guide and $ROOTSYS/documentation/primer
Tutorials: plenty of examples to be run
Ù $ROOTSYS/tutorials
Macros: place to store your own macros that you might call from anywhere
Ù $ROOTSYS/macros

This is a structure that we acknowledge and try to follow as well

2018/04/25 ETSN 2018 - J-B. Blanchard 12 / 82

The ROOT project: TTree, the way to handle data

https://root.cern.ch/root/html534/ClassIndex.html
https://root.cern.ch/root/html534/guides/users-guide/ROOTUsersGuideA4.pdf
https://root.cern.ch/howtos
https://root-forum.cern.ch/

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 13 / 82

The Uranie project

The Uranie platform

Developed at CEA/DEN to help partners handling sensitivity,
meta-modelling and optimisation problems.

Written in C++ (∼2 releases a year), based on ROOT
Multi platform (developed on Unix and tested on Windows)
It brings simple data access:
Ù Flat ASCII file, XML, JSON . . .
Ù TTree (internal ROOT format)
Ù SQL database access
Provides advanced visualisation tools (on top of ROOT’s one)
Allows some analysis to be run in parallel through various mechanism
Ù simple fork processing
Ù shared-memory distribution (pthread)
Ù split-memory distribution (mpirun)
Ù through graphical card (GPU)
Main purpose is tools for:
Ù construction of design-of-experiment
Ù uncertainty propagation
Ù surrogate models generation
Ù sensitivity analysis
Ù optimisation problem
Ù reliability analysis
LGPL

2018/04/25 ETSN 2018 - J-B. Blanchard 14 / 82

The Uranie project

General overview: version 3.12 (1/2)

Fabrice Gaudier Jean-Marc Martinez Gilles Arnaud Guillaume Damblin J-B. Blanchard

General description:
ROOT version: 5.34.36
11 modules / 246 classes
∼ 134 000 lines of code
Compilation using CMAKE

OpenSource since 2013/05

Regularly tested:
7 Linux platforms and Windows 7 every night
∼ 1500 unitary tests with CPPUNIT

∼ 83% coverage with GCOV (without logs)
Memory leak check with VALGRIND

2018/04/25 ETSN 2018 - J-B. Blanchard 15 / 82

The Uranie project: Organisation and documentation

General overview: version 3.12 (2/2)

Developed in C++ on Linux, but
Can be compiled on Windows as well

Ù We provide (on-demand) a self-consistent binary
archive to be put anywhere one needs (recommended).
Very few “#ifdef WIN32”

Ù Same macro can be run both on Linux and Windows
Every macro in C++ can be written in PYTHON as well

Li
nu

x
W

indow
s

2018/04/25 ETSN 2018 - J-B. Blanchard 16 / 82

The Uranie project: Organisation and documentation

Communication with other platforms

Use standard input/output language to import/export data and models, to help
communicate with other platforms (XML, PMML, JSON. . .)

"DataServer" library - JSON format

{
"_metadata" : {

"table_name" : "IRIS_Fisher",
"table_description" : "Fisher Iris Data Set",
"short_names" : [

"SepalLength", "SepalWidth",
"PetalLength", "PetalWidth", "Species"],

"date" : "Thu Mar 17 11:40:48 2016"
}
"items" : [{
"PetalLength" : 14, "PetalWidth" : 2,
"SepalLength" : 50, "SepalWidth" : 33, "Species" : 1
}, "items" : { ...

Import/Export data in Json format in order to :

• Benefit the features of D3 (D3js.org)
− Interactive visualisation into a browser
− Several available graphics (Cobweb, Sun-

Burst, Treemap,..)
• Visualize the same data file in ParaView / Paravis

module of Salomé
• Proposal as a common format for data with OpenTURNS

2018/04/25 ETSN 2018 - J-B. Blanchard 17 / 82

The Uranie project: Organisation and documentation

Documentation

Three different levels
2 using DOCBOOK, generating both PDF and HTML formats.

Methodological reference (∼ 60 pages)
User manual: ∼ 550 pages
∼ 250 pages: describing methods and their options.
∼ 250 pages: use-case macros (∼ 100 examples)
Ù Standalone code and use-cases macros are tested.
Ù Plots are reproduced and compared to reference.

Developer’s guide using DOXYGEN (HTML only)
describing methods from comments in the code

DE
N/

DA
NS

/D
M

2S
/S

TM
F/

LG
LS

/R
T/

17
-0

06
/A

DE
N/

DA
NS

/D
M

2S
/S

TM
F/

LG
LS

/N
T/

20
17

-6
22

73
/A

2018/04/25 ETSN 2018 - J-B. Blanchard 18 / 82

The Uranie project: Organisation and documentation

Documentation

Three different levels
2 using DOCBOOK, generating both PDF and HTML formats.

Methodological reference (∼ 60 pages)
User manual: ∼ 550 pages
∼ 250 pages: describing methods and their options.
∼ 250 pages: use-case macros (∼ 100 examples)
Ù Standalone code and use-cases macros are tested.
Ù Plots are reproduced and compared to reference.

Developer’s guide using DOXYGEN (HTML only)
describing methods from comments in the code

DE
N/

DA
NS

/D
M

2S
/S

TM
F/

LG
LS

/R
T/

17
-0

06
/A

DE
N/

DA
NS

/D
M

2S
/S

TM
F/

LG
LS

/N
T/

20
17

-6
22

73
/A

2018/04/25 ETSN 2018 - J-B. Blanchard 18 / 82

The Uranie project: Organisation and documentation

Accessing this material

Once Uranie is installed from the archive
As for ROOT, $URANIESYS is defined and used:

to point out toward documentation
Ù $URANIESYS/share/uranie/index.html
to point out toward the use-case macros
Ù $URANIESYS/share/uranie/macros

These paths are reminded at every
setup when Uranie is installed from

archive (from v3.12)

2018/04/25 ETSN 2018 - J-B. Blanchard 19 / 82

The Uranie project: Organisation and documentation

The module point of view

Few dependencies:
Compulsory: ROOT, CPPUNIT, CMAKE

Optional: PCL, NLOPT, OPT++*, MPI, FFTW, CUDA

(*) a patched version of OPT++ is brought along in the archive

Organised in modules:
Some are more technical ones:

Ù DataServer: data handling and first statistical treatment
Ù (Re)Launcher: interfaces to code/function handling.

Can deal with code, PYTHON-function, C++-interpreted
and compiled functions
Many are dedicated ones:

Ù Sampler: creation of design-of-experiments
Ù Modeler: surrogate-model generation
Ù (Re)Optimizer: mono/multi criteria optimisation
Ù Sensitivity: ranking inputs w.r.t impact on the output

DataServer

Optimizer

Modeler

ReOptimizer

UncertModeler

Sampler

Sensitivity

ReLauncher

Launcher

Reliability

FFTW

MPI

Opt++

NLopt

PCL

CUDA+boost

1

Uranie’s module Uranie’s dependence

The next following slides will discuss the content of the main dedicated
modules

2018/04/25 ETSN 2018 - J-B. Blanchard 20 / 82

The Uranie project: The modular organisation

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 21 / 82

Use-case & work-flow

Use-case: the thermal exchange model

y

x0−e e

Ti = T (x, 0)

T∞ T∞

1

Experimental setup and goals:
Planar sheet of width 2e (infinite in y).

Ù Initial temperature is Ti (homogeneous)
t=0, sheet is exposed to warmer fluid (T∞)

Aim:

Find out the thermal gauge θ(x, t) =
T (x, t)− Ti
T∞ − Ti

Get the thermal exchange coefficient h [W.m−2.K−1]
through the Biot number Bi.

Theoretically, under certain hypothesis

θ(xds, tds) = 2
∞∑
n=1

βn cos(ωnxds) exp(−1

4
ω2
ntds)

using dimensionless parameters

xds = x/e and tds =
t

tD
= t× 4λ

e2ρCρ

βn =
γn sin(ωn)

ωn(γn +Bi)
and γn = ω2

n +B2
i

and ωn are solutions of the following equation

ωn tan(ωn) = Bi

Value Uncertainty
Thickness [m] : e 10×10−3 5×10−5

Thermal conductivity [W.(m.K)−1] : λ 0.25 1.5×10−3

Massive thermal capacity [J.(kg.K)−1] : Cρ 1300 15.6
Volumic mass [kg.m−3] : ρ 2200 4.4

Table: Summary of PTFE properties along with their uncertainty.

Uncertainties are taken mimicking Iron
tabulated values.

2018/04/25 ETSN 2018 - J-B. Blanchard 22 / 82

Use-case & work-flow: The temperature exchange toy-model

Create a code to perform this estimation

Using previous formula

θ(xds, tds) = 2
∞∑
n=1

βn cos(ωnxds) exp(−1

4
ω2
ntds)

Choose a threshold on the infinite serie (here M = 40)
Implement this as a C++ function with different levels

Compute θ for a single (x,t) configuration
Compute θ for vectors of x and t.

This code is rather fast, but we’ll consider it as a
large time/cpu consuming code

dsx0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ds
t

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

dst
0 1 2 3 4 5 6 7 8 9 10

(x
,t,

B
i=

4)
θ

0

0.2

0.4

0.6

0.8

1

=0dsx
=0.1dsx

=0.2dsx
=0.3dsx

=0.4dsx
=0.5dsx

=0.6dsx
=0.7dsx

=0.8dsx
=0.9dsx

=1dsx

dsx
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(x
,t,

B
i=

4)
θ

0

0.2

0.4

0.6

0.8

1

=0dst
=1dst

=2dst
=3dst

=4dst
=5dst

=6dst
=7dst

=8dst
=9dst

=10
ds

t

2018/04/25 ETSN 2018 - J-B. Blanchard 23 / 82

Use-case & work-flow: The temperature exchange toy-model

Workflow: breakdown into steps

Main steps:
A: problem definition

Ù Uncertain input variables
Ù Variable/quantity of interest
Ù Model construction

B: uncertainty quantification
Ù Choice of pdfs
Ù Choice of correlations

B’: quantification of sources
Ù Inverse methods using data

to constrain input values and
uncertainties
C: uncertainty propagation

Ù Evolution of output variability
w.r.t input uncertainty
C’: sensitivity analysis

Ù Uncertainty source sorting

These steps are usually model dependent, it might be useful to iterate
to help converging to proper conclusions

2018/04/25 ETSN 2018 - J-B. Blanchard 24 / 82

Use-case & work-flow: Schematic workflow examples

Workflow: breakdown into steps

Main steps:
A: problem definition

Ù Uncertain input variables
Ù Variable/quantity of interest
Ù Model construction

B: uncertainty quantification
Ù Choice of pdfs
Ù Choice of correlations

B’: quantification of sources
Ù Inverse methods using data

to constrain input values and
uncertainties
C: uncertainty propagation

Ù Evolution of output variability
w.r.t input uncertainty
C’: sensitivity analysis

Ù Uncertainty source sorting

These steps are usually model dependent, it might be useful to iterate
to help converging to proper conclusions

2018/04/25 ETSN 2018 - J-B. Blanchard 24 / 82

Use-case & work-flow: Schematic workflow examples

Workflow: breakdown into steps

Main steps:
A: problem definition

Ù Uncertain input variables
Ù Variable/quantity of interest
Ù Model construction

B: uncertainty quantification
Ù Choice of pdfs
Ù Choice of correlations

B’: quantification of sources
Ù Inverse methods using data

to constrain input values and
uncertainties
C: uncertainty propagation

Ù Evolution of output variability
w.r.t input uncertainty
C’: sensitivity analysis

Ù Uncertainty source sorting

These steps are usually model dependent, it might be useful to iterate
to help converging to proper conclusions

2018/04/25 ETSN 2018 - J-B. Blanchard 24 / 82

Use-case & work-flow: Schematic workflow examples

Workflow: breakdown into steps

Main steps:
A: problem definition

Ù Uncertain input variables
Ù Variable/quantity of interest
Ù Model construction

B: uncertainty quantification
Ù Choice of pdfs
Ù Choice of correlations

B’: quantification of sources
Ù Inverse methods using data

to constrain input values and
uncertainties
C: uncertainty propagation

Ù Evolution of output variability
w.r.t input uncertainty
C’: sensitivity analysis

Ù Uncertainty source sorting

These steps are usually model dependent, it might be useful to iterate
to help converging to proper conclusions

2018/04/25 ETSN 2018 - J-B. Blanchard 24 / 82

Use-case & work-flow: Schematic workflow examples

Workflow: breakdown into steps

Main steps:
A: problem definition

Ù Uncertain input variables
Ù Variable/quantity of interest
Ù Model construction

B: uncertainty quantification
Ù Choice of pdfs
Ù Choice of correlations

B’: quantification of sources
Ù Inverse methods using data

to constrain input values and
uncertainties
C: uncertainty propagation

Ù Evolution of output variability
w.r.t input uncertainty
C’: sensitivity analysis

Ù Uncertainty source sorting

These steps are usually model dependent, it might be useful to iterate
to help converging to proper conclusions

2018/04/25 ETSN 2018 - J-B. Blanchard 24 / 82

Use-case & work-flow: Schematic workflow examples

Workflow: breakdown into steps

Main steps:
A: problem definition

Ù Uncertain input variables
Ù Variable/quantity of interest
Ù Model construction

B: uncertainty quantification
Ù Choice of pdfs
Ù Choice of correlations

B’: quantification of sources
Ù Inverse methods using data

to constrain input values and
uncertainties
C: uncertainty propagation

Ù Evolution of output variability
w.r.t input uncertainty
C’: sensitivity analysis

Ù Uncertainty source sorting

These steps are usually model dependent, it might be useful to iterate
to help converging to proper conclusions

2018/04/25 ETSN 2018 - J-B. Blanchard 24 / 82

Use-case & work-flow: Schematic workflow examples

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 25 / 82

The dataserver structure

Dataserver module: create and handling variables

With the DataServer module, one can:
create new variables using pre-defined statistical laws
create new variables from existing ones
compute first statistical

Mean, standard deviation, minimum, maximum
Normalisation
Correlation matrices
Quantile (various definition, among which Wilks’ ones)

define variables using pre-defined statistical laws among:
uniform, gaussian, exponential, triangular, beta, weibull. . .
create plots and import/export data (ASCII, XML, JSON. . .)
Ù See next slide.

x
1− 0.5− 0 0.5 1

P
D

F

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Uniform Normal GumbelMax

x
1− 0.5− 0 0.5 1

C
D

F

0

0.2

0.4

0.6

0.8

1

Uniform Normal GumbelMax

p(x)
0 0.2 0.4 0.6 0.8 1

In
vC

D
F

1.5−

1−

0.5−

0

0.5

1

1.5

2

Uniform Normal GumbelMax

2018/04/25 ETSN 2018 - J-B. Blanchard 26 / 82

The dataserver structure: Import/export data

Dataserver module: import/export/represent data

// Loading namespaces to get rid of complicated names
using namespace URANIE :: DataServer;

// Create dataserver and fill if with data file
TDataServer * tds = new TDataServer("Name", "Titre");
tds ->fileDataRead("geyser.dat");

// Create the canvas on which plots will be laid
TCanvas *Can = new TCanvas("Can1","Can1" ,10 ,32 ,800 ,1200);
Can ->Divide (2,3);// Divide the canvas into 6 pads

//2-dimensionnal plots with iso -level as color
Can ->cd(1); tds ->drawScatterplot("x2:x1");
//2-dimensionnal plots with average of x2 vs x1
Can ->cd(2); tds ->drawProfile("x2:x1","","same");

//2-dimensionnal plot with projection onto both axis
Can ->cd(3); tds ->drawTufte("x2:x1");
//All variables two -by-two and 1-dimensionnal plot in diagonal
Can ->cd(4); tds ->drawPairs ();

//Plot CDF and CCDF curve for x2 variable
Can ->cd(5); tds ->drawCDF("x2","","ccdf");
//Plot BoxPlot (mean , standard deviation , mediane , quantiles ...)
Can ->cd(6); tds ->drawBoxPlot("x2");

#TITLE: geyser data
#COLUMN_NAMES: x1| x2
#COLUMN_TITLES: x_{1}| #delta x_{2}
#COLUMN_UNITS: Sec|

3.600 79.000
1.800 54.000
3.333 74.000
2.283 62.000
4.533 85.000
2.883 55.000
4.700 88.000
3.600 85.000
1.950 51.000
4.350 85.000
1.833 54.000
3.917 84.000
4.200 78.000
1.750 47.000
4.700 83.000
2.167 52.000
1.750 62.000
4.800 84.000
1.600 52.000
4.250 79.000
1.800 51.000
1.750 47.000
3.450 78.000
3.067 69.000
4.533 74.000
3.600 83.000
1.967 55.000
4.083 76.000
3.850 78.000
4.433 79.000

2018/04/25 ETSN 2018 - J-B. Blanchard 27 / 82

The dataserver structure: Import/export data

Dataserver module: import/export/represent data

// Loading namespaces to get rid of complicated names
using namespace URANIE :: DataServer;

// Create dataserver and fill if with data file
TDataServer * tds = new TDataServer("Name", "Titre");
tds ->fileDataRead("geyser.dat");

// Create the canvas on which plots will be laid
TCanvas *Can = new TCanvas("Can1","Can1" ,10 ,32 ,800 ,1200);
Can ->Divide (2,3);// Divide the canvas into 6 pads

//2-dimensionnal plots with iso -level as color
Can ->cd(1); tds ->drawScatterplot("x2:x1");
//2-dimensionnal plots with average of x2 vs x1
Can ->cd(2); tds ->drawProfile("x2:x1","","same");

//2-dimensionnal plot with projection onto both axis
Can ->cd(3); tds ->drawTufte("x2:x1");
//All variables two -by-two and 1-dimensionnal plot in diagonal
Can ->cd(4); tds ->drawPairs ();

//Plot CDF and CCDF curve for x2 variable
Can ->cd(5); tds ->drawCDF("x2","","ccdf");
//Plot BoxPlot (mean , standard deviation , mediane , quantiles ...)
Can ->cd(6); tds ->drawBoxPlot("x2");

Can be used either
interactively: (%) root File.C

compiled:
(%) g++ -o Exec File.C ` echo $URANIECPPFLAG $URANIELDFLAG`
(%) ./Exec

interactively in PYTHON: (%) python -i File.py

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

0

1

2

3

4

5

6

Scatterplot x2:x1

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

Scatterplot x2:x1

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

 [Sec]
1

 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

Tufte graph x2:x1 htemp
Entries 272
Mean 3.488

RMS 1.139

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 50

2

4

6

8

10

12

14

htemp
Entries 272
Mean 3.488

RMS 1.139

Histogram x1

2
 xδ

40 50 60 70 80 90 100

 [S
ec

]
1

 x

1.5

2

2.5

3

3.5

4

4.5

5

Scatterplot x1:x2

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

Scatterplot x2:x1
htemp

Entries 272
Mean 70.9

RMS 13.57

2
 xδ

40 50 60 70 80 90 1000

2

4

6

8

10

12

14

htemp
Entries 272
Mean 70.9

RMS 13.57

Histogram x2

2 xδ
40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

CDF & CCDF x2

2 xδAttribute :

 CDF

 CCDF

CDF & CCDF x2 x2

40 50 60 70 80 90 100

2018/04/25 ETSN 2018 - J-B. Blanchard 27 / 82

The dataserver structure: Import/export data

Dataserver module: import/export/represent data

import ROOT
from ROOT.URANIE import DataServer as DS

Create dataserver and fill if with data file
tds = DS.TDataServer("Name", "Titre");
tds.fileDataRead("geyser.dat");

Create the canvas on which plots will be laid
Can = ROOT.TCanvas("Can1","Can1" ,10 ,32 ,800 ,1200);
Can.Divide (2,3);## Divide the canvas into 6 pads

2-dimensionnal plots with iso -level as color
Can.cd(1); tds.drawScatterplot("x2:x1");
2-dimensionnal plots with average of x2 vs x1
Can.cd(2); tds.drawProfile("x2:x1","","same");

2-dimensionnal plot with projection onto both axis
Can.cd(3); tds.drawTufte("x2:x1");
All variables two -by -two and 1-dimensionnal plot in diagonal
Can.cd(4); tds.drawPairs ();

Plot CDF and CCDF curve for x2 variable
Can.cd(5); tds.drawCDF("x2","","ccdf");
Plot BoxPlot (mean , standard deviation , mediane , quantiles ...)
Can.cd(6); tds.drawBoxPlot("x2");

Can be used either
interactively: (%) root File.C

compiled:
(%) g++ -o Exec File.C ` echo $URANIECPPFLAG $URANIELDFLAG`
(%) ./Exec

interactively in PYTHON: (%) python -i File.py

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

0

1

2

3

4

5

6

Scatterplot x2:x1

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

Scatterplot x2:x1

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

 [Sec]
1

 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

Tufte graph x2:x1 htemp
Entries 272
Mean 3.488

RMS 1.139

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 50

2

4

6

8

10

12

14

htemp
Entries 272
Mean 3.488

RMS 1.139

Histogram x1

2
 xδ

40 50 60 70 80 90 100

 [S
ec

]
1

 x

1.5

2

2.5

3

3.5

4

4.5

5

Scatterplot x1:x2

 [Sec]1 x
1.5 2 2.5 3 3.5 4 4.5 5

2
 xδ

40

50

60

70

80

90

100

Scatterplot x2:x1
htemp

Entries 272
Mean 70.9

RMS 13.57

2
 xδ

40 50 60 70 80 90 1000

2

4

6

8

10

12

14

htemp
Entries 272
Mean 70.9

RMS 13.57

Histogram x2

2 xδ
40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

CDF & CCDF x2

2 xδAttribute :

 CDF

 CCDF

CDF & CCDF x2 x2

40 50 60 70 80 90 100

2018/04/25 ETSN 2018 - J-B. Blanchard 27 / 82

The dataserver structure: Import/export data

Defining stochastic variables I

A large number of stochastic variable can be implemented

Law Class in Uranie Adjustable parameters
Uniform TUniformDistribution Min, Max
Log-uniform TLogUniformDistribution Min, Max
Triangular TTriangularDistribution Min, Max, Mode
Log-triangular TLogTriangularDistribution Min, Max, Mode
Normal (gaussian) TNormalDistribution Mean (µ), Sigma (σ)
Log-normal TLogNormalDistribution Mean (µ), Sigma (σ)
Trapezium TTrapeziumDistribution Min, Max, Low, Up
Uniform by parts TUniformByPartsDistribution Min, Max, Median
Exponential TExponentialDistribution Rate (λ), Min
Cauchy TCauchyDistribution Scale (γ), Median
GumbelMax TGumbelMaxDistribution Mode (µ), Scale (β)
Weibull TWeibullDistribution Scale (λ) , Shape (k) , Min
Beta TBetaDistribution alpha (α) , beta (β) , Min, Max
GenPareto TGenParetoDistribution Location (µ), Scale (σ), Shape (ξ)
Gamma TGammaDistribution Shape (α) , Scale (β) , Location (ξ)
Inverse gamma TInvGammaDistribution Shape (α) , Scale (β) , Location (ξ)

2018/04/25 ETSN 2018 - J-B. Blanchard 28 / 82

The dataserver structure: Variables & statistical operations

Defining stochastic variables II

2018/04/25 ETSN 2018 - J-B. Blanchard 29 / 82

The dataserver structure: Variables & statistical operations

Operations on variables

TDataServer * tds = new TDataServer("Name", "Titre");
tds ->fileDataRead("simpleNorm.dat");

// Create new variables
tds ->addAttribute("double_y", "y * 2");
tds ->addAttribute("y_even", "((y%2==0)? 1 : 0)");

tds ->computeRank("y"); // Compute the rank of y’s value

// Compute a global normalisation of y :
tds ->normalize("y","GZO",TDataServer :: kZeroOne); // From 0 to 1
tds ->normalize("y","GCent",TDataServer :: kCentered); // 0-Centered
tds ->normalize("y","MOO",TDataServer :: kMinusOneOne); // From -1 to 1

tds ->Scan("*"); // Dump results on screen

// Compute the correlation matrix and dump it as well
TMatrixD mat = tds ->computeCorrelationMatrix("y:x:y_even");
mat.Print ();

#NAME: cho
#COLUMN_NAMES: x|y
#COLUMN_TYPES: D|D

0 0
1 1
2 4
3 9
4 16
5 25

2018/04/25 ETSN 2018 - J-B. Blanchard 30 / 82

The dataserver structure: Variables & statistical operations

Operations on variables

TDataServer * tds = new TDataServer("Name", "Titre");
tds ->fileDataRead("simpleNorm.dat");

// Create new variables
tds ->addAttribute("double_y", "y * 2");
tds ->addAttribute("y_even", "((y%2==0)? 1 : 0)");

tds ->computeRank("y"); // Compute the rank of y’s value

// Compute a global normalisation of y :
tds ->normalize("y","GZO",TDataServer :: kZeroOne); // From 0 to 1
tds ->normalize("y","GCent",TDataServer :: kCentered); // 0-Centered
tds ->normalize("y","MOO",TDataServer :: kMinusOneOne); // From -1 to 1

tds ->Scan("*"); // Dump results on screen

// Compute the correlation matrix and dump it as well
TMatrixD mat = tds ->computeCorrelationMatrix("y:x:y_even");
mat.Print ();

#NAME: cho
#COLUMN_NAMES: x|y
#COLUMN_TYPES: D|D

0 0
1 1
2 4
3 9
4 16
5 25

2018/04/25 ETSN 2018 - J-B. Blanchard 30 / 82

The dataserver structure: Variables & statistical operations

Importance of the visualisation

Before getting in into complicated analysis/methods it is always a good idea to
visualise data to check basic hypothesis and expectation.

out
0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

Histogram out

Simple illustration
5 inputs (U(0, 1))
1 output (between 0 and 1)
No trend in 2× 2 correlation matrix
No trend in the parallel plot..
... but when focusing on specific part

2018/04/25 ETSN 2018 - J-B. Blanchard 31 / 82

Simple Plot

The dataserver structure: Variables & statistical operations

Importance of the visualisation

Before getting in into complicated analysis/methods it is always a good idea to
visualise data to check basic hypothesis and expectation.

x0
0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

Histogram x0

x1
0.2 0.4 0.6 0.8 1

x0

0.2

0.4

0.6

0.8

1

Scatterplot x0:x1

x2
0.2 0.4 0.6 0.8 1

x0

0.2

0.4

0.6

0.8

1

Scatterplot x0:x2

x3
0.2 0.4 0.6 0.8 1

x0

0.2

0.4

0.6

0.8

1

Scatterplot x0:x3

x4
0.2 0.4 0.6 0.8 1

x0

0.2

0.4

0.6

0.8

1

Scatterplot x0:x4

out
0.2 0.4 0.6 0.8 1

x0

0.2

0.4

0.6

0.8

1

Scatterplot x0:out

x0
0.2 0.4 0.6 0.8 1

x1

0.2

0.4

0.6

0.8

1

Scatterplot x1:x0

x1
0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

Histogram x1

x2
0.2 0.4 0.6 0.8 1

x1

0.2

0.4

0.6

0.8

1

Scatterplot x1:x2

x3
0.2 0.4 0.6 0.8 1

x1

0.2

0.4

0.6

0.8

1

Scatterplot x1:x3

x4
0.2 0.4 0.6 0.8 1

x1

0.2

0.4

0.6

0.8

1

Scatterplot x1:x4

out
0.2 0.4 0.6 0.8 1

x1

0.2

0.4

0.6

0.8

1

Scatterplot x1:out

x0
0.2 0.4 0.6 0.8 1

x2

0.2

0.4

0.6

0.8

1

Scatterplot x2:x0

x1
0.2 0.4 0.6 0.8 1

x2

0.2

0.4

0.6

0.8

1

Scatterplot x2:x1

x2
0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

Histogram x2

x3
0.2 0.4 0.6 0.8 1

x2

0.2

0.4

0.6

0.8

1

Scatterplot x2:x3

x4
0.2 0.4 0.6 0.8 1

x2

0.2

0.4

0.6

0.8

1

Scatterplot x2:x4

out
0.2 0.4 0.6 0.8 1

x2

0.2

0.4

0.6

0.8

1

Scatterplot x2:out

x0
0.2 0.4 0.6 0.8 1

x3

0.2

0.4

0.6

0.8

1

Scatterplot x3:x0

x1
0.2 0.4 0.6 0.8 1

x3

0.2

0.4

0.6

0.8

1

Scatterplot x3:x1

x2
0.2 0.4 0.6 0.8 1

x3

0.2

0.4

0.6

0.8

1

Scatterplot x3:x2

x3
0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

Histogram x3

x4
0.2 0.4 0.6 0.8 1

x3

0.2

0.4

0.6

0.8

1

Scatterplot x3:x4

out
0.2 0.4 0.6 0.8 1

x3

0.2

0.4

0.6

0.8

1

Scatterplot x3:out

x0
0.2 0.4 0.6 0.8 1

x4

0.2

0.4

0.6

0.8

1

Scatterplot x4:x0

x1
0.2 0.4 0.6 0.8 1

x4

0.2

0.4

0.6

0.8

1

Scatterplot x4:x1

x2
0.2 0.4 0.6 0.8 1

x4

0.2

0.4

0.6

0.8

1

Scatterplot x4:x2

x3
0.2 0.4 0.6 0.8 1

x4

0.2

0.4

0.6

0.8

1

Scatterplot x4:x3

x4
0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

Histogram x4

out
0.2 0.4 0.6 0.8 1

x4

0.2

0.4

0.6

0.8

1

Scatterplot x4:out

x0
0.2 0.4 0.6 0.8 1

ou
t

0.2

0.4

0.6

0.8

1

Scatterplot out:x0

x1
0.2 0.4 0.6 0.8 1

ou
t

0.2

0.4

0.6

0.8

1

Scatterplot out:x1

x2
0.2 0.4 0.6 0.8 1

ou
t

0.2

0.4

0.6

0.8

1

Scatterplot out:x2

x3
0.2 0.4 0.6 0.8 1

ou
t

0.2

0.4

0.6

0.8

1

Scatterplot out:x3

x4
0.2 0.4 0.6 0.8 1

ou
t

0.2

0.4

0.6

0.8

1

Scatterplot out:x4

out
0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

Histogram out

Simple illustration
5 inputs (U(0, 1))
1 output (between 0 and 1)
No trend in 2× 2 correlation matrix
No trend in the parallel plot..
... but when focusing on specific part

2018/04/25 ETSN 2018 - J-B. Blanchard 31 / 82

drawPair

The dataserver structure: Variables & statistical operations

Importance of the visualisation

Before getting in into complicated analysis/methods it is always a good idea to
visualise data to check basic hypothesis and expectation.

x0

0.9998

0.0001

x1

0.9999

0.0002

x2

0.9999

0.0000

x3

0.9999

0.0000

x4

0.9999

0.0001

out

1.0000

0.0007

Simple illustration
5 inputs (U(0, 1))
1 output (between 0 and 1)
No trend in 2× 2 correlation matrix
No trend in the parallel plot..
... but when focusing on specific part

2018/04/25 ETSN 2018 - J-B. Blanchard 31 / 82

Parallel plot
or Cobweb

The dataserver structure: Variables & statistical operations

Importance of the visualisation

Before getting in into complicated analysis/methods it is always a good idea to
visualise data to check basic hypothesis and expectation.

x0

0.9998

0.0001

x1

0.9999

0.0002

x2

0.9999

0.0000

x3

0.9999

0.0000

x4

0.9999

0.0001

out

1.0000

0.0007

Simple illustration
5 inputs (U(0, 1))
1 output (between 0 and 1)
No trend in 2× 2 correlation matrix
No trend in the parallel plot..
... but when focusing on specific part

2018/04/25 ETSN 2018 - J-B. Blanchard 31 / 82

Parallel plot
or Cobweb

The dataserver structure: Variables & statistical operations

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 32 / 82

Launching functions or codes

General discussion: introducing the concepts

Uranie’s approach
Non-intrusive: code is a black box that cannot be modified but for some allowed parameters
Two implementations (historical) from two different perspective, allowing redundancy

Launcher: (La)
Relauncher: (Re)

Nature of Evaluators
C++ function interpreted through CInt (La, Re)
C++ compiled function (Re)
python function (Re)
external code (La, Re)

Ù Need input / output files to communicate with the code

Ways of submitting jobs
Sequentially (La, Re)
Forking the code (La)
Shared-memory distribution pthread (Re)
Split-memory distribution mpirun (Re)
Distributed on certain clusters (La)

Very large number of use-case in the user manual to cover almost
combination of runners/evaluators

DataServer
Problem definition

Runner
How to run

Evaluator
Function, code
or combination

Input file type
Interface input file

Output file type
Interface output file

Real input file
input.in

Physical model
Proper application

Real output file
output.out

Creation or
modification

Reading

C
om

m
an

d
co

d
e

Function and Code

Function only

Code only

Action

Sending data

Receiving data

1

2018/04/25 ETSN 2018 - J-B. Blanchard 33 / 82

Launching functions or codes

Starting with a function

Type of functions
C++ interpreted function

Very simple to implement
Inputs and outputs are only double-value
Interpreted so slow if it contains loop

Python function (Re)
Can deal with double, vectors and strings
Can only be launch from python interface
Interpreted so slow if it contains loop

C++ compiled function (Re)
Compiled⇒ logic and speed of C++ conserved
Can deal with double, vectors and strings
To do this, a complicated structure should be used (no
example provided, contact us)

Working with it
1. Evaluator object is constructed
2. Inputs are provided in the correct order
3. Outputs are provided in the correct order
4. Evaluator provided to the Runner

void MyFunction(double *in, double *out)
{

double par1 = in[0], par2=in[1]; // ...
// Many interesting operations

// ...

// as many as requested outputs
out [0] = ...;
out [1] = ...;

}

It can be defined
in the same file
in another file
// Loading function from another file
gROOT ->LoadMacro("functionfile.C");

Caution:
Cannot be used with shared-memory
distribution

2018/04/25 ETSN 2018 - J-B. Blanchard 34 / 82

Launching functions or codes: Simple case: functions

Starting with a function

Type of functions
C++ interpreted function

Very simple to implement
Inputs and outputs are only double-value
Interpreted so slow if it contains loop

Python function (Re)
Can deal with double, vectors and strings
Can only be launch from python interface
Interpreted so slow if it contains loop

C++ compiled function (Re)
Compiled⇒ logic and speed of C++ conserved
Can deal with double, vectors and strings
To do this, a complicated structure should be used (no
example provided, contact us)

Working with it
1. Evaluator object is constructed
2. Inputs are provided in the correct order
3. Outputs are provided in the correct order
4. Evaluator provided to the Runner

def PythonFunction(arg1 , arg2 , arg3) :

Random operation on the argument
vect = [i* arg1 for i in range (3)]
doub = 2*arg2
stri = ",".join(arg3) # arg3 is a list

Always return in a list
return [vect , stri , doub]

It can be defined
in the same file
in another file
Loading function from functionfile.py
from functionfile import PythonFunction

Caution:
Unless otherwise specified, all argument
are assumed to be double
Cannot be used with shared-memory
distribution

2018/04/25 ETSN 2018 - J-B. Blanchard 34 / 82

Launching functions or codes: Simple case: functions

Starting with a function

Type of functions
C++ interpreted function

Very simple to implement
Inputs and outputs are only double-value
Interpreted so slow if it contains loop

Python function (Re)
Can deal with double, vectors and strings
Can only be launch from python interface
Interpreted so slow if it contains loop

C++ compiled function (Re)
Compiled⇒ logic and speed of C++ conserved
Can deal with double, vectors and strings
To do this, a complicated structure should be used (no
example provided, contact us)

Working with it
1. Evaluator object is constructed
2. Inputs are provided in the correct order
3. Outputs are provided in the correct order
4. Evaluator provided to the Runner

int MyCompicatedFunction(
std::vector <UEntry*> *in ,
std::vector <UEntry*> *out
)

{

// Not discussed here :D

return getOutDimension(out); // Not
discussed as well

}

Caution:
Unless otherwise specified, all argument
are assumed to be double
Can be used with shared-memory
distribution (depends on implementation)

2018/04/25 ETSN 2018 - J-B. Blanchard 34 / 82

Launching functions or codes: Simple case: functions

Simple example of an interpreted C++ function

void dummyFunction(double *in, double *out)
{

out [0] = in[0] * in[1];
out [1] = in[0] + in[1];

}

int ExampleFunction ()
{

// Define problem
TDataServer *tds = new TDataServer("tds","pouet");
tds ->addAttribute(new TNormalDistribution("x1" ,-1,1));
tds ->addAttribute(new TNormalDistribution("x2" ,3,2));

// Construct DOE
TSampling *ts = new TSampling(tds , "srs", 10000);
ts ->generateSample ();

// Launch Function
TLauncherFunction *tlf = new TLauncherFunction(tds ,

dummyFunction , "x1:x2", "prod:sum");
tlf ->run();

// Draw results
TCanvas *Can = new TCanvas("Can","Can" ,10,32,600 ,900);
Can ->Divide (1,4);
Can ->cd(1); tds ->Draw("x1");
Can ->cd(2); tds ->Draw("x2");
Can ->cd(3); tds ->Draw("prod");
Can ->cd(4); tds ->Draw("sum");
Can ->SaveAs("exampleFunctionProdAndSum.pdf");

}

htemp
Entries 10000
Mean 1.008−
RMS 1.006

x1
5− 4− 3− 2− 1− 0 1 2 3

0

50

100

150

200

250

300

350

__tdshisto__0
Entries 10000
Mean 1.008−
RMS 1.006

Histogram x1

htemp
Entries 10000
Mean 3.005
RMS 2.014

x2
6− 4− 2− 0 2 4 6 8 10 12

0

50

100

150

200

250

300

350

400

__tdshisto__0
Entries 10000
Mean 3.005
RMS 2.014

Histogram x2

htemp
Entries 10000
Mean 3.029−
RMS 4.16

Output of function[prod]
30− 25− 20− 15− 10− 5− 0 5 10 15

0

100

200

300

400

500

600

700

800
__tdshisto__0

Entries 10000
Mean 3.029−
RMS 4.16

Histogram prod

htemp
Entries 10000
Mean 1.997
RMS 2.251

Output of function[sum]
8− 6− 4− 2− 0 2 4 6 8 10 12

0

50

100

150

200

250

300

350

__tdshisto__0
Entries 10000
Mean 1.997
RMS 2.251

Histogram sum

2018/04/25 ETSN 2018 - J-B. Blanchard 35 / 82

Launching functions or codes: Simple case: functions

The needed steps for code

To be run by Uranie, a code must:
be able to be called on a command line;
receive its entry inputs via one (or more) text files;
write its outputs in a text file readable by Uranie;

The procedure consists in:
1. creating the input/output file interfaces

and connect their variables;
2. executing the code on newly created or

modified input files;
3. Reading the output file obtained and

storing the values in the TDS.

The main difference with a function is the good handling of input /
output files.

DataServer
Problem definition

Runner
How to run

Evaluator
Function, code
or combination

Input file type
Interface input file

Output file type
Interface output file

Real input file
input.in

Physical model
Proper application

Real output file
output.out

Creation or
modification

Reading

C
om

m
an

d
co

d
e

Function and Code

Function only

Code only

Action

Sending data

Receiving data

1

2018/04/25 ETSN 2018 - J-B. Blanchard 36 / 82

Launching functions or codes: The external code

Available format for input files

Uranie is capable of dealing with several kinds of input file

row: Numerical values of all the variables of entry are written on only one line (separated by
spaces).

column: Numerical values of every variable are written on its own line (a line by variable).
key: Variables associated with a keyword followed by a field where to write its numerical value

(“Key = Value”). Key should be unique.
flag: Variables associated with marker in reference input file. The marker will be replaced by

corresponding numerical value every time it will appear.
XML: The entry file of reference is a corresponding XML file. Every variable is associated with a

XML tag and the numerical value is written in the attribute or the corresponding field (La).

Special care for vectors and strings
For many files (input/output file can be code) one might need to define

boundaries: to state where does the string/vector starts and ends
delimiter: to state how to separate two consecutive values in a vector

Methods exist for that, for all input/output files

[0.325625 , 0.6546941684 , 0.035654685] “ Chocolat “

2018/04/25 ETSN 2018 - J-B. Blanchard 37 / 82

Launching functions or codes: The external code

Available format for input files

Uranie is capable of dealing with several kinds of input file

row: Numerical values of all the variables of entry are written on only one line (separated by
spaces).

column: Numerical values of every variable are written on its own line (a line by variable).
key: Variables associated with a keyword followed by a field where to write its numerical value

(“Key = Value”). Key should be unique.
flag: Variables associated with marker in reference input file. The marker will be replaced by

corresponding numerical value every time it will appear.
XML: The entry file of reference is a corresponding XML file. Every variable is associated with a

XML tag and the numerical value is written in the attribute or the corresponding field (La).

Special care for vectors and strings
For many files (input/output file can be code) one might need to define

boundaries: to state where does the string/vector starts and ends
delimiter: to state how to separate two consecutive values in a vector

Methods exist for that, for all input/output files

[0.325625 , 0.6546941684 , 0.035654685] “ Chocolat “

2018/04/25 ETSN 2018 - J-B. Blanchard 37 / 82

Launching functions or codes: The external code

Example of flag format

Advantage
Allow to keep a complicated input file, as long as its structure does not change

File containing flags Modified file

2018/04/25 ETSN 2018 - J-B. Blanchard 38 / 82

Launching functions or codes: The external code

Example of flag format

Advantage
Allow to keep a complicated input file, as long as its structure does not change

File containing flags Modified file

2018/04/25 ETSN 2018 - J-B. Blanchard 38 / 82

Launching functions or codes: The external code

Available format for output files

Uranie is capable of dealing with several kinds of output file

row: Numerical values of all the variables of entry are written on only one line (separated by
spaces).

column: Numerical values of every variable are written on its own line (a line by variable).
key: Variables associated with a keyword followed by a field where to write its numerical value

(“Key = Value”). Key should be unique.
XML: The entry file of reference is a corresponding XML file. Every variable is associated with a

XML tag and the numerical value is written in the attribute or the corresponding field (La).

It is also possible to add scripts or codes on top of the one under study
to reshape the output file

Composition
Composition of functions/codes can be done as well
⇒ A proper chain can be defined, output of the Nth assessor can become an input of the N+1th one.

2018/04/25 ETSN 2018 - J-B. Blanchard 39 / 82

Launching functions or codes: The external code

Simple example with a code

{
// Define problem
TDataServer *tds = new TDataServer("tds","pouet");
TNormalDistribution *x1=new TNormalDistribution("x1" ,-1,1);
TNormalDistribution *x2=new TNormalDistribution("x2" ,3,2);
tds ->addAttribute(x1); tds ->addAttribute(x2);

// Construct large DOE
TSampling *ts = new TSampling(tds , "srs", 1000);
ts ->generateSample ();

// Specify where to write input values
char inF [20]= "input.in";
x1 ->setFileKey(inF , "x1", "%f", TAttributeFileKey :: kNewKey);
x2 ->setFileKey(inF , "x2", "%f", TAttributeFileKey :: kNewKey);

// Create the output file interface
TOutputFileRow *fout = new TOutputFileRow("toto.out");
fout ->addAttribute("prod"); fout ->addAttribute("sum");

// Define Code
TCode *code = new TCode(tds , "Dummy");
code ->addOutputFile(fout);

// Launch Code
TLauncher *tlf = new TLauncher(tds , code);
//tlf ->setVarDraw ("sum");
tlf ->run("nointermed");

// Draw results
TCanvas *Can = new TCanvas("Can","Can" ,10,32,600 ,900);
Can ->Divide (1,4);
Can ->cd(1); tds ->Draw("x1");
Can ->cd(2); tds ->Draw("x2");
Can ->cd(3); tds ->Draw("prod");
Can ->cd(4); tds ->Draw("sum");
Can ->SaveAs("exampleCodeProdAndSum.pdf");

}2018/04/25 ETSN 2018 - J-B. Blanchard 40 / 82

Launching functions or codes: The external code

Simple example with a code

{
// Define problem
TDataServer *tds = new TDataServer("tds","pouet");
TNormalDistribution *x1=new TNormalDistribution("x1" ,-1,1);
TNormalDistribution *x2=new TNormalDistribution("x2" ,3,2);
tds ->addAttribute(x1); tds ->addAttribute(x2);

// Construct large DOE
TSampling *ts = new TSampling(tds , "srs", 1000);
ts ->generateSample ();

// Specify where to write input values
char inF [20]= "input.in";
x1 ->setFileKey(inF , "x1", "%f", TAttributeFileKey :: kNewKey);
x2 ->setFileKey(inF , "x2", "%f", TAttributeFileKey :: kNewKey);

// Create the output file interface
TOutputFileRow *fout = new TOutputFileRow("toto.out");
fout ->addAttribute("prod"); fout ->addAttribute("sum");

// Define Code
TCode *code = new TCode(tds , "Dummy");
code ->addOutputFile(fout);

// Launch Code
TLauncher *tlf = new TLauncher(tds , code);
//tlf ->setVarDraw ("sum");
tlf ->run("nointermed");

// Draw results
TCanvas *Can = new TCanvas("Can","Can" ,10,32,600 ,900);
Can ->Divide (1,4);
Can ->cd(1); tds ->Draw("x1");
Can ->cd(2); tds ->Draw("x2");
Can ->cd(3); tds ->Draw("prod");
Can ->cd(4); tds ->Draw("sum");
Can ->SaveAs("exampleCodeProdAndSum.pdf");

}

Dummy.C
#include <iostream >
#include <fstream >
#include <sstream >

int main(void)
{

double x1, x2 , out1 , out2;

// Getting the inputs
std:: string key , equal , ponct;
std:: fstream afile;
afile.open("input.in", std::ios::in);
afile >> key >> equal >> x1 >> ponct;
afile >> key >> equal >> x2 >> ponct;
afile.close();

out1 = x1 * x2;
out2 = x1 + x2;

// Output
std:: ofstream out;
out.open("toto.out");
out << out1 << " " << out2 << "\n";
out.close ();

}

input.in

x1 = 0.161040 ;
x2 = 4.591294 ;

2018/04/25 ETSN 2018 - J-B. Blanchard 40 / 82

Launching functions or codes: The external code

Simple example with a code

{
// Define problem
TDataServer *tds = new TDataServer("tds","pouet");
TNormalDistribution *x1=new TNormalDistribution("x1" ,-1,1);
TNormalDistribution *x2=new TNormalDistribution("x2" ,3,2);
tds ->addAttribute(x1); tds ->addAttribute(x2);

// Construct large DOE
TSampling *ts = new TSampling(tds , "srs", 1000);
ts ->generateSample ();

// Specify where to write input values
char inF [20]= "input.in";
x1 ->setFileKey(inF , "x1", "%f", TAttributeFileKey :: kNewKey);
x2 ->setFileKey(inF , "x2", "%f", TAttributeFileKey :: kNewKey);

// Create the output file interface
TOutputFileRow *fout = new TOutputFileRow("toto.out");
fout ->addAttribute("prod"); fout ->addAttribute("sum");

// Define Code
TCode *code = new TCode(tds , "Dummy");
code ->addOutputFile(fout);

// Launch Code
TLauncher *tlf = new TLauncher(tds , code);
//tlf ->setVarDraw ("sum");
tlf ->run("nointermed");

// Draw results
TCanvas *Can = new TCanvas("Can","Can" ,10,32,600 ,900);
Can ->Divide (1,4);
Can ->cd(1); tds ->Draw("x1");
Can ->cd(2); tds ->Draw("x2");
Can ->cd(3); tds ->Draw("prod");
Can ->cd(4); tds ->Draw("sum");
Can ->SaveAs("exampleCodeProdAndSum.pdf");

}

htemp
Entries 1000
Mean 1.016−
RMS 1.017

x1
4− 3− 2− 1− 0 1 2 3

0

5

10

15

20

25

30

35

__tdshisto__0
Entries 1000
Mean 1.016−
RMS 1.017

Histogram x1

htemp
Entries 1000
Mean 3.01
RMS 1.954

x2
4− 2− 0 2 4 6 8

0

5

10

15

20

25

30

35

40

__tdshisto__0
Entries 1000
Mean 3.01
RMS 1.954

Histogram x2

htemp
Entries 1000
Mean 3.059−
RMS 4.175

prod
30− 20− 10− 0 10 20

0

10

20

30

40

50

60

70

80

__tdshisto__0
Entries 1000
Mean 3.059−
RMS 4.175

Histogram prod

htemp
Entries 1000
Mean 1.994
RMS 2.203

sum
6− 4− 2− 0 2 4 6 8 10 12

0

5

10

15

20

25

30

35

40

__tdshisto__0
Entries 1000
Mean 1.994
RMS 2.203

Histogram sum

2018/04/25 ETSN 2018 - J-B. Blanchard 40 / 82

Launching functions or codes: The external code

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 41 / 82

Surrogate model generation

Main principle of surrogate-models (1/2)

A surrogate model is a - more or less - complicated function that
reproduce / mimic as best as possible the behaviour of a complicated

code

Surrogate-models need a training basis, L, defined as:

L = {(xi, yi)}i∈[1,nS], where xi = (x1
i . . . x

nX
i)

C is the code;
xi is the ith realisation of random variable inputs vector X;
yi is the ith realisation of the output random variable Y (yi = C(xi)) whose expectation on L is y.

The estimation of the output of interest is written ŷ = M(x) where M is the surrogate model.

Quality criteria
Using the training basis only:

Mean Square Error : MSE =
1

nS

∑nS
i=1(yi − ŷi)2

R2 = 1−∑nS
i=1

(yi − ŷi)2

(yi − y)2

Given a test basis P of size nP :

Q2 = 1−
nP∑
i=1

(yi − ŷ(xi))
2

(yi − y)2
,xi ∈ P

2018/04/25 ETSN 2018 - J-B. Blanchard 42 / 82

The closer to 1, R2 and/or Q2 are
the better the model M is.

Surrogate model generation

Main principle of surrogate-models (2/2)

Advance techniques with the training basis
Regularisation can be used to avoid over/under fitting problems:
Ù Split L into two parts: training (large) and control (small)
Ù Compute MSE for the training part (training error) and the
control one (Generalisation error)
Ù stop optimisation once generalisation error is growing.
Leave-one-out method (LOO):
Ù estimate ŷ′i = M ′(xi) where M ′ is the model whose training has
been made on L without the ith point.
Ù repeat this nS times and compute the statistical measurements:

MSELoo =
1

nS

nS∑
i=1

(yi − ŷ′i)2 and Q2
Loo = 1−

nS∑
i=1

(yi − ŷ′i)2

(yi − ȳ)2

2018/04/25 ETSN 2018 - J-B. Blanchard 43 / 82

Surrogate model generation

Main principle of surrogate-models (2/2)

To avoid under-fitting requires:
selecting a family of functions adapted to the data to be modelled;
choosing an optimisation algorithm capable of minimising the
chosen criterion;
giving enough degrees of freedom to the model to fit the data.

To avoid over-fitting, you must:
ensure that the examples used to build the model are
representative of the domain of validity in question;
have a strategy to control the degrees of freedom of the model.

Some examples of control strategies role:
control the number of model parameters;
control the range of variation of the parameters values;
monitor the progress of the optimisation;
etc. . .

2018/04/25 ETSN 2018 - J-B. Blanchard 43 / 82

Surrogate model generation

Training on a known database for our case...

Simple case:
Reproduce the behaviour of the simple case in dimensionless
space

Using a 40 locations DOE as inputs in (xds,tds)
Generate various models from it

Linear regression
k-nearest neighbour
Neural network
Kriging
Chaos polynomial expansion
. . .

Run the model on a test basis of 2000 locations
Ù Plot the estimated values θ̂ as a function of the real one (θ)

dsx0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ds
t

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

xad
0.2 0.4 0.6 0.8 1

ta
d

2

4

6

8

10

tad:xad

2018/04/25 ETSN 2018 - J-B. Blanchard 44 / 82

Surrogate model generation

The neural network concept (1/2)

A neural network is the association, in a graph more or less complex, of elementary objects called
formal neurons.
The Artificial Neural Networks (ANN) in Uranie are Multi Layer Perceptron (MLP) with one (or
more) hidden layer and one (or more) output variables. A MLP is a network composed of
successive layers where the neurons of one layer does not have any connections with each other.

2018/04/25 ETSN 2018 - J-B. Blanchard 45 / 82

Surrogate model generation: Neural networks

The neural network concept (2/2)

A formal neuron is a model that is characterised by:
an internal state y ∈ S;
x1, . . . , xnX input signals
a weight vector [ω0, . . . , ωnX]

an activation function φ

The activation function performs a transformation of a linear combination of the input signals:

y = φ

(
nX∑
i=1

ωiXi

)
with φ(x) =

1

1 + e−x
or tanh(x)

This linear combination is determined by a weight vector [ω0, . . . , ωnX] associated with each neuron
and whose values are estimated in the learning phase.

2018/04/25 ETSN 2018 - J-B. Blanchard 46 / 82

Surrogate model generation: Neural networks

Gaussian process in action

Observations yobs = (yobs,i)1≤i≤n for (xi)1≤i≤n
Choose covariance function k(xi,xj; θ)

Estimate θ by Maximum Likelihood
Compute covariance matrix
K = (k(xi,xj))1≤i,j≤n
Law Y conditionally to the observations Y |yobs
k(x) = (k(x,xj))1≤i,j≤n
y(x) = kt(x)K−1yobs
σ2(x) = k(x,x)− kt(x)K−1k(x)
For these, the mean is considered equal to 0
Conditional expectation y(x)⇒ estimation by
the model
Conditional variance σ2(x)⇒ confidence
interval

∅ uncertainty on observations⇒
interpolation mode

Validation can be done with Leave-One
Out method (simple as its needs only
removing a line/column in matrices)

Observations

2018/04/25 ETSN 2018 - J-B. Blanchard 47 / 82

Surrogate model generation: Gaussian Process (kriging)

Gaussian process in action

Observations yobs = (yobs,i)1≤i≤n for (xi)1≤i≤n
Choose covariance function k(xi,xj; θ)

Estimate θ by Maximum Likelihood
Compute covariance matrix
K = (k(xi,xj))1≤i,j≤n
Law Y conditionally to the observations Y |yobs
k(x) = (k(x,xj))1≤i,j≤n
y(x) = kt(x)K−1yobs
σ2(x) = k(x,x)− kt(x)K−1k(x)
For these, the mean is considered equal to 0
Conditional expectation y(x)⇒ estimation by
the model
Conditional variance σ2(x)⇒ confidence
interval

∅ uncertainty on observations⇒
interpolation mode

Validation can be done with Leave-One
Out method (simple as its needs only
removing a line/column in matrices)

Observations
Y (xnew|yn)

2018/04/25 ETSN 2018 - J-B. Blanchard 47 / 82

Surrogate model generation: Gaussian Process (kriging)

Gaussian process in action

Observations yobs = (yobs,i)1≤i≤n for (xi)1≤i≤n
Choose covariance function k(xi,xj; θ)

Estimate θ by Maximum Likelihood
Compute covariance matrix
K = (k(xi,xj))1≤i,j≤n
Law Y conditionally to the observations Y |yobs
k(x) = (k(x,xj))1≤i,j≤n
y(x) = kt(x)K−1yobs
σ2(x) = k(x,x)− kt(x)K−1k(x)
For these, the mean is considered equal to 0
Conditional expectation y(x)⇒ estimation by
the model
Conditional variance σ2(x)⇒ confidence
interval

∅ uncertainty on observations⇒
interpolation mode

Validation can be done with Leave-One
Out method (simple as its needs only
removing a line/column in matrices)

Observations
Y (xnew|yn)

E[Y (xnew|yn)]

2018/04/25 ETSN 2018 - J-B. Blanchard 47 / 82

Surrogate model generation: Gaussian Process (kriging)

Gaussian process in action

Observations yobs = (yobs,i)1≤i≤n for (xi)1≤i≤n
Choose covariance function k(xi,xj; θ)

Estimate θ by Maximum Likelihood
Compute covariance matrix
K = (k(xi,xj))1≤i,j≤n
Law Y conditionally to the observations Y |yobs
k(x) = (k(x,xj))1≤i,j≤n
y(x) = kt(x)K−1yobs
σ2(x) = k(x,x)− kt(x)K−1k(x)
For these, the mean is considered equal to 0
Conditional expectation y(x)⇒ estimation by
the model
Conditional variance σ2(x)⇒ confidence
interval

∅ uncertainty on observations⇒
interpolation mode

Validation can be done with Leave-One
Out method (simple as its needs only
removing a line/column in matrices)

Observations
Y (xnew|yn)

E[Y (xnew|yn)]
1.96*Var[Y (xnew|yn)] (±95%)

2018/04/25 ETSN 2018 - J-B. Blanchard 47 / 82

Surrogate model generation: Gaussian Process (kriging)

Chaos polynomial expansion principle I

Chaos polynomial expansion is functional approach that allows to build a surrogate
model on a base of orthogonal polynomial well suited for sensitivity analysis.

Introduced by Wiener (1938) popularised by Ghanem (1999)
Every random variable whose mean and variance is finite can be written

X(ξ) =
∑
α

xαΨα(ξ)

ξi independant gaussian random variables and xα are the coefficients
Ψα(ξ) =

∏
iHαi

(ξi) obtained by Hermite polynomial tensorisation whose degree αi

Usage in Uranie:
This summation needs to be truncated twice :

on the degree (p)
on the number of variable ξi
⇒ This number is fixed in Uranie: every ξi associated to an uncertainty to be modelled.

2018/04/25 ETSN 2018 - J-B. Blanchard 48 / 82

Surrogate model generation: Chaos Polynomial expansion

Chaos polynomial expansion principle II

The group of random variable X(ξ) with finite mean and variance is an Hilbert space with a scalar
product

< X, Y >= E(XY)

ξi are independant⇒ the Ψα construction from Hermite tensorisation are orthogonal

< Ψα,Ψα′ >= 1α=α′||Ψα||2

Ψα form an orthogonal basis

Polynomial chaos property
With φ0 = 1 and ||φα|| = 1

Expansion coefficients are obtained by projection xα =< X,Ψα >

E = x0

σ2(X) =
∑
|α|>0 x

2
α

Can link the value of the coefficient to mean, variance so the functionnal decomposition of variance
(Sobol indices)

Generalised Chaos polynomial expansion
Generalised to other polynomials tensorisation depending on considered densities
in Uranie : Hermite (gaussian), Legendre (Uniform), Laguerre (Exponential), Jacobi (Beta)

2018/04/25 ETSN 2018 - J-B. Blanchard 49 / 82

Surrogate model generation: Chaos Polynomial expansion

Chaos polynomial expansion principle III

Using a system depending on two random variables, ξU (uniform) and ξN (gaussian).

Y (ξU , ξN) =
∑
|α|1≤p

βαΨα(ξU , ξN), where α ∈ IN2

Y (ξU , ξN) = β0,0 (|α|1 = 0)

+ β1,0L1(ξU) + β0,1H1(ξN) (|α|1 = 1)

+ β1,1L1(ξU)H1(ξN) + β2,0L2(ξU) + β0,2H2(ξN) (|α|1 = 2)

+ β2,1L2(ξU)H1(ξN) + β1,2L1(ξU)H2(ξN) + β3,0L3(ξU) + β0,3H3(ξN) (|α|1 = 3)

+ . . .

Properties
The chosen degree (p) sets the truncation of the expansion
Resulting number of coefficients

Ncoeff =
(nX + p)!

nX ! p!

Coefficient measurement
Can be done by regression or integration

Monte-Carlo or QMC
Gauss quadrature, tensorised 1D formula, Smolyak construction (sparse grid)

2018/04/25 ETSN 2018 - J-B. Blanchard 50 / 82

Surrogate model generation: Chaos Polynomial expansion

Summary of different models

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dst
0 2 4 6 8 10

=
4)

i
,B

ds
=

0.
5,

t
ds

(xθ

0

0.2

0.4

0.6

0.8

1

Observations

Real values

Estimated values

RMSE (by Loo) 0.0853148
Q2 0.95268
l1 1.68289

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear Regression CP expansion kNN

Kriging 2D Kriging 1D Neural network
2018/04/25 ETSN 2018 - J-B. Blanchard 51 / 82

Surrogate model generation: Chaos Polynomial expansion

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 52 / 82

The sampler module

Global picture

This module contains methods to generate design-of-experiments
(DOE), from the information provided on the variables of the study.

Some methods are deterministic:
Ù variable’s law might not be known: default value and interval of variation are (often) sufficient.
Ù variable’s observations are not independent, but its distribution brings other advantages.
Ù a set of data is perfectly reproducible.

Some methods are stochastic:
Ù the generated values are realisations of random variables of known laws.
Ù variable’s observations are independent. Two variable’s observations are not a priori correlated.
Ù a doe cannot be reproduced, unless the "seed" of the random generator is known.

2018/04/25 ETSN 2018 - J-B. Blanchard 53 / 82

The sampler module

Discussing some deterministic approaches

What DOE can be produced ?
Depending on the analysis purpose

check impact of certain parameters
get the best estimate of integral for instance
get the best coverage of the input parameter space (lowest discrepance)
...

x1
0 0.5 1 1.5 2 2.5 3 3.5 4

x2

2−

1.8−

1.6−

1.4−

1.2−

1−

0.8−

0.6−

0.4−

0.2−

0

Regular OAT

x1
1− 0.5− 0 0.5 1

x2

2

2.5

3

3.5

4

4.5

5

Petras, level=8

x2
0 0.2 0.4 0.6 0.8 1

x1

0

0.2

0.4

0.6

0.8

1

Halton Sequence

2018/04/25 ETSN 2018 - J-B. Blanchard 54 / 82

The sampler module: Deterministic approach

Discussing some deterministic approaches

What DOE can be produced ?
Depending on the analysis purpose

check impact of certain parameters
get the best estimate of integral for instance
get the best coverage of the input parameter space (lowest discrepance)
...

x1
0 0.5 1 1.5 2 2.5 3 3.5 4

x2

2−

1.8−

1.6−

1.4−

1.2−

1−

0.8−

0.6−

0.4−

0.2−

0

Regular OAT

x1
1− 0.5− 0 0.5 1

x2

2

2.5

3

3.5

4

4.5

5

Petras, level=8

x2
0 0.2 0.4 0.6 0.8 1

x1

0

0.2

0.4

0.6

0.8

1

Halton Sequence

2018/04/25 ETSN 2018 - J-B. Blanchard 54 / 82

The sampler module: Deterministic approach

Discussing some deterministic approaches

What DOE can be produced ?
Depending on the analysis purpose

check impact of certain parameters
get the best estimate of integral for instance
get the best coverage of the input parameter space (lowest discrepance)
...

x1
0 0.5 1 1.5 2 2.5 3 3.5 4

x2

2−

1.8−

1.6−

1.4−

1.2−

1−

0.8−

0.6−

0.4−

0.2−

0

Regular OAT

x1
1− 0.5− 0 0.5 1

x2

2

2.5

3

3.5

4

4.5

5

Petras, level=8

x2
0 0.2 0.4 0.6 0.8 1

x1

0

0.2

0.4

0.6

0.8

1

Halton Sequence

2018/04/25 ETSN 2018 - J-B. Blanchard 54 / 82

The sampler module: Deterministic approach

Random sampling: simple or stratified

Different possible construction
SRS: Generating the samples for each parameter following its own probability density function.

Ù Obtained parameter variance rather high⇔ precision of the estimation is poor
Ù Many repetitions needed in order to reach a satisfactory precision.

LHS: Split each parameter interval into equal-probabilities. One value drawn for every segment.
Ù Ensure that each variable’s domain of variation totally covered in a homogeneous way
Ù Cannot add points once generated.

x2
4− 3− 2− 1− 0 1 2 3

0

10

20

30

40

50

60

70

80

SRS case, N(0,1)SRS case, N(0,1)

x1
1− 0.5− 0 0.5 1

0

5

10

15

20

25

30

35

40

SRS case, U(0,1)SRS case, U(0,1)

2018/04/25 ETSN 2018 - J-B. Blanchard 55 / 82

The sampler module: Stochastic approach

Random sampling: simple or stratified

Different possible construction
SRS: Generating the samples for each parameter following its own probability density function.

Ù Obtained parameter variance rather high⇔ precision of the estimation is poor
Ù Many repetitions needed in order to reach a satisfactory precision.

LHS: Split each parameter interval into equal-probabilities. One value drawn for every segment.
Ù Ensure that each variable’s domain of variation totally covered in a homogeneous way
Ù Cannot add points once generated.

Probability
0 0.2 0.4 0.6 0.8 1

x

3−

2−

1−

0

1

2

3

Normal(0,1) Inverse CDFNormal(0,1) Inverse CDF

Probability
0 0.2 0.4 0.6 0.8 1

x

5−

4−

3−

2−

1−

0

1

2

3

4

5

Uniform(-5,5) Inverse CDFUniform(-5,5) Inverse CDF

2018/04/25 ETSN 2018 - J-B. Blanchard 55 / 82

The sampler module: Stochastic approach

Random sampling: simple or stratified

Different possible construction
SRS: Generating the samples for each parameter following its own probability density function.

Ù Obtained parameter variance rather high⇔ precision of the estimation is poor
Ù Many repetitions needed in order to reach a satisfactory precision.

LHS: Split each parameter interval into equal-probabilities. One value drawn for every segment.
Ù Ensure that each variable’s domain of variation totally covered in a homogeneous way
Ù Cannot add points once generated.

N(0,1)
3− 2− 1− 0 1 2 3

U
(-

5,
5)

5−

4−

3−

2−

1−

0

1

2

3

4

5

SRS drawingSRS drawing

N(0,1)
3− 2− 1− 0 1 2 3

U
(-

5,
5)

5−

4−

3−

2−

1−

0

1

2

3

4

5

LHS drawingLHS drawing

2018/04/25 ETSN 2018 - J-B. Blanchard 55 / 82

The sampler module: Stochastic approach

Simple case comparison

x1
0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

SRS

x1
0 0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

x1
0.2 0.4 0.6 0.8 1

x2

0.2

0.4

0.6

0.8

1

LHS

x1
0 0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

x1
0.2 0.4 0.6 0.8 1

x2

0.2

0.4

0.6

0.8

1

MaxiMin LHS

x1
0 0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

x1
0 0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

Halton sequence

x1
0 0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

x1
0 0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

Sobol sequence

x1
0 0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

x1
0 0.2 0.4 0.6 0.8 1

x2

0.2

0.4

0.6

0.8

1

LHS with correlation

x1
0 0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

2018/04/25 ETSN 2018 - J-B. Blanchard 56 / 82

The sampler module: Stochastic approach

Application to our use-case

Using a LHS grid, requesting 100 points defining the unknown
parameter laws to be gaussian

Value Uncertainty
Thickness [m] : e 10×10−3 5×10−5

Thermal conductivity
[W.(m.K)−1] : λ 0.25 1.5×10−3

Massive thermal capacity
[J.(kg.K)−1] : Cρ

1300 15.6

Volumic mass [kg.m−3] : ρ 2200 4.4

Table: Summary of PTFE properties along with their
uncertainty.

time [s]
0 500 1000 1500 2000 2500 3000

θ

0

0.2

0.4

0.6

0.8

1

x=0mm
x=6.6mm

x=3.3mm
x=9.9mm

time [s]
0 500 1000 1500 2000 2500 3000

θδ

0

0.002

0.004

0.006

2018/04/25 ETSN 2018 - J-B. Blanchard 57 / 82

The sampler module: Stochastic approach

To go further

The drawing used to get locations is important as, in most cases, the
number of allowed estimation is small

Thorough investigation of the analysis must be done:
the quantity of interest: quantile measurement, mean / variance of a distribution
the possibility to increase the dataset if needed
the input parameter space dimensions.
. . .

More possibilities
Create a sub-sample of points representative of the complete provided dataset.
Can emphasise some low-probability region through importance sampling
Adaptive designs-of-experiments construction using surrogate-models
Can put correlation through copulas of different kinds (parametric functions)

2018/04/25 ETSN 2018 - J-B. Blanchard 58 / 82

The sampler module: Stochastic approach

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 59 / 82

Sensitivity analysis

What’s a sensitivity analysis

The goals:
Estimate the fraction of variability of the output Y generated by every input Xi

Ù Using either quantitative or hierarchical results
Get an idea of which input can be considered useless (if so) and reduce the dimension
Get an idea on which variable is dominant (if so) and work to reduce the uncertainty on it

General kind of analysis:
local ones: variation around only one of the input (mainly deterministic method)
global ones: more global variation,

Available in Uranie

finite differences:
δY

δXi
(x0) (not discussed here, see use-case macro)

Screening method like Morris
Regression methods (not discussed here, see use-case macro)

on values (Person)
on ranks (Spearman)

Sobol indexes
“Sobol/Saltelli” methods (first and total order)
Fourier-based : FAST/RBD (first order)

2018/04/25 ETSN 2018 - J-B. Blanchard 60 / 82

Sensitivity analysis

Screening method

Screening methods:
allow a "rough" first SA, for a smaller computational cost than Monte Carlo methods.
can be applied to problems of reasonably high dimensions (even above 100 dimensions)
may be followed by more refined techniques to focus the SA on the more important inputs

The Morris method
Introduced by M. Morris in 1991
Consists of varying one input at a time (OAT), but at different starting points
Uses an average measure of the "elementary effect" (EE) of each input, by observing the effect on
the target variable
Is quantitative, but does not have a direct interpretation in terms of output variance STi)
Provides information to classify input factors in three sets:
Ù factors that have negligible effect on Y
Ù factors that have linear effects without interactions
Ù factors that have non-linear effects and/or interactions

2018/04/25 ETSN 2018 - J-B. Blanchard 61 / 82

Sensitivity analysis: Screening methods

Description of the Morris method (1/2)

1. Every inputs’ range-of-evolution is transformed into [0,1]
2. A p-level grid is created in the [0,1]nX hyper-cube. The allowed value being then

[0, 1
p−1,

2
p−1, . . . , 1]

3. A trajectory t is drawn at random as :
a starting point in the hyper-cube (assessment 0 of the code)

a direction to a new point (assessment 1 of the code)

repeating previous step for all other directions (assessment 2 to nX
of the code)

4. Elementary Effect are computed for every move:

EEt
i =

f (xt1, .., x
t
i + ∆, .., xtnX)− f (xt1, .., x

t
i, .., x

t
nX

)

∆

∆ is larger than local methods (e.g. finite differences)
5. Statistics over nt EE is computed (∀i ∈ [1, nX])

µi =
1

nt

nt∑
j=1

EEj
i and µ∗i =

1

nt

nt∑
j=1

|EEj
i |

σ2
i =

1

nt − 1

nt∑
j=1

(EEj
i − µi)2

x1

x2

x3

0 1

1

1

p = 6 ∆Morris = p
2 ∗ 1

p−1

•step0

•
step1

•
step2

•step3

•step0

•
step1

•
step2

•step3

p = 6 ∆ = 1
p−1

1

2018/04/25 ETSN 2018 - J-B. Blanchard 62 / 82

Sensitivity analysis: Screening methods

Description of the Morris method (2/2)

Total cost is nt(nX + 1) assessment of the code (nt being at least 4-10)
Interpret these results in σi vs µ∗i (or µi) plane

factors that have negligible effect : both µ∗ and σ are small.
factors that have linear effect, without interactions with other inputs: µ∗ is large (all variations have
an impact) but σ is small (the impact is the same independently of the starting point).
factors that have non-linear effects and/or interaction with other inputs: both µ∗ and σ are large.

*µ
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

σ

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014 thickness

conductivity capacity

mass
useless

time = 572 s

0 500 1000 1500 2000 2500 3000
* µ

0

0.005

0.01

0.015

0.02

Thickness
Thermal conductivity

Massive thermal capacity
Volumic mass Useless

time [s]
0 500 1000 1500 2000 2500 3000

σ

0

0.002

0.004

0.006

0.008

0.01

0.012

Local modification of the model
To show the effect of non-used variable, a new input called “useless” has been introduced.

2018/04/25 ETSN 2018 - J-B. Blanchard 63 / 82

Sensitivity analysis: Screening methods

Description of the Morris method (2/2)

Total cost is nt(nX + 1) assessment of the code (nt being at least 4-10)
Interpret these results in σi vs µ∗i (or µi) plane

factors that have negligible effect : both µ∗ and σ are small.
factors that have linear effect, without interactions with other inputs: µ∗ is large (all variations have
an impact) but σ is small (the impact is the same independently of the starting point).
factors that have non-linear effects and/or interaction with other inputs: both µ∗ and σ are large.

*µ
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

σ

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014 thickness

conductivity capacity

mass
useless

time = 572 s

0 500 1000 1500 2000 2500 3000
* µ

0

0.005

0.01

0.015

0.02

Thickness
Thermal conductivity

Massive thermal capacity
Volumic mass Useless

time [s]
0 500 1000 1500 2000 2500 3000

σ

0

0.002

0.004

0.006

0.008

0.01

0.012

Local modification of the model
To show the effect of non-used variable, a new input called “useless” has been introduced.

2018/04/25 ETSN 2018 - J-B. Blanchard 63 / 82

Sensitivity analysis: Screening methods

Description of the Morris method (2/2)

Total cost is nt(nX + 1) assessment of the code (nt being at least 4-10)
Interpret these results in σi vs µ∗i (or µi) plane

factors that have negligible effect : both µ∗ and σ are small.
factors that have linear effect, without interactions with other inputs: µ∗ is large (all variations have
an impact) but σ is small (the impact is the same independently of the starting point).
factors that have non-linear effects and/or interaction with other inputs: both µ∗ and σ are large.

*µ
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

σ

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014 thickness

conductivity capacity

mass
useless

time = 572 s

0 500 1000 1500 2000 2500 3000
* µ

0

0.005

0.01

0.015

0.02

Thickness
Thermal conductivity

Massive thermal capacity
Volumic mass Useless

time [s]
0 500 1000 1500 2000 2500 3000

σ

0

0.002

0.004

0.006

0.008

0.01

0.012

Local modification of the model
To show the effect of non-used variable, a new input called “useless” has been introduced.

2018/04/25 ETSN 2018 - J-B. Blanchard 63 / 82

Sensitivity analysis: Screening methods

HDMR/Sobol/ANOVA decomposition (and other names)

Considering the function f defined by y = f (x1, x2, . . . , xnX), f can be integrated in Ω

with a finite expectation then there is a unique decomposition

y = f0 +

nX∑
i=1

fi(xi) +
∑

1≤i<j≤nX
fi,j(xi, xj) + . . . + fx1,x2,...,xnX

(x1, x2, . . . , xnX)

The decomposition properties
f0 is a constant: the expectation of y f0 = E[f (x)] =

∫
Ω f (x)dx

the expectation of all terms is null
∫

Ω fldx = 0 ∀ l

all the summands are orthogonal:
∫

Ω fkfldx = 0 ∀ k 6= l

each term can be defined as

fi(xi) = E[f (x|xi)]− f0

fi,j(xi, xj) = E[f (x|xi, xj)]− fi(xi)− fj(xj)− f0

an so on

2018/04/25 ETSN 2018 - J-B. Blanchard 64 / 82

Sensitivity analysis: Sobol indexes, theoretical introduction

Variance decomposition

y = f0 +

nX∑
i=1

fi(xi) +
∑

1≤i<j≤nX
fi,j(xi, xj) + . . . + fx1,x2,...,xnX

(x1, x2, . . . , xnX)

When the inputs are independent, we can partition Var[f (x)] into

Var[f (x)] =

nX∑
i=1

Vi +
∑

1≤i<j≤nX
Vi,j + . . . + Vx1,x2,...,xnX

In this new form, Vi = Var[fi(xi)] =
∫
f 2
i (xi)dxi... so if we normalise

1 =

nX∑
i=1

Si +
∑

1≤i<j≤nX
Si,j + . . . + Sx1,x2,...,xnX

Leading to 2nX − 1 coefficients

2018/04/25 ETSN 2018 - J-B. Blanchard 65 / 82

Sensitivity analysis: Sobol indexes, theoretical introduction

Estimate and interpret the coefficients

First order coefficients: Si =
Var[E[y|xi]]

Var[Y]

Cope for the impact of xi on y without considering the interaction between inputs∑
Si ≤ 1∑
Si = 1 for a purely additive model

1−∑Si quantifies the presence of interactions

4-dimensional problem⇔ 1 = S1 + S2 + S3 + S4 + S1,2 + S1,3 + S1,4 +
S2,3 + S2,4 + S3,4 + S1,2,3 + S1,2,4 + S1,3,4 + S2,3,4 + S1,2,3,4

Total order coefficients: taking all effect into account

Example for entry 1 : ST1 = S1 + S1,2 + S1,3 + S1,4 + S1,2,3 + S1,2,4 + S1,3,4 + S1,2,3,4

STi = 1− Var[E[y|x∼i]]
Var[Y]

where ∼ i are all sets not including i

STi − Si is a measure of interactions with any other inputs∑
STi ≥ 1. If this is an equality, the model is perfectly additive.

2018/04/25 ETSN 2018 - J-B. Blanchard 66 / 82

Sensitivity analysis: Sobol indexes, theoretical introduction

The Saltelli methods

This method starts with two matrices M and N of size nS by nX.

M =

m1,1 . . . m1,i . . . m1,nX
...

mj,1 . . . mj,i . . . mj,nX
...

mnS,1 . . .mnS,i . . .mnS,nX

 − nS→

f (m1,1, . . . ,m1,i, . . . ,m1,nX)

...
f (mj,1, . . . ,mj,i, . . . ,mj,nX)

...
f (mnS,1, . . . ,mnS,i, . . . ,mnS,nX)

N =

n1,1 . . . n1,i . . . n1,nX
...

nj,1 . . . nj,i . . . nj,nX
...

nnS,1 . . .nnS,i . . .nnS,nX

−M′s ith input in N→ Ni =

n1,1 . . . n1,i−1 m1,i n1,i+1 . . . n1,nX
...

nj,1 . . . nj,i−1 mj,i nj,i+1 . . . nj,nX
...

nnS,1 . . .nnS,i−1mnS,innS,i+1 . . .nnS,nX

− nS × nX→

f (n1,1, . . . , n1,i−1,m1,i, n1,i+1, . . . , n1,nX)

...
f (nj,1, . . . , nj,i−1,mj,i, nj,i+1, . . . , nj,nX)

...
f (nnS,1, . . . , nnS,i−1,mnS,i, nnS,i+1, . . . , nnS,nX)

nS

y (for STi
)

f (n1,1, . . . , n1,i, . . . , n1,nX)
...

f (nj,1, . . . , nj,i, . . . , nj,nX)
...

f (nnS,1, . . . , nnS,i, . . . , nnS,nX)

Estimation of the indexes

Si =
Var[E(y|xi)]

Var[y]
. Comparing M’s and Ni’s results

Ù Cost is nS(nX + 1)

STi = 1− Var[E[y|x∼i]]
Var[Y]

. Comparing N’s and Ni’s results

Ù Cost is nS

Ù The total cost of this method is nS(nX + 2)

2018/04/25 ETSN 2018 - J-B. Blanchard 67 / 82

Sensitivity analysis: Sobol indexes computation

Application to our use-case

time [s]
0 500 1000 1500 2000 2500 3000

1
S

0

0.2

0.4

0.6

0.8

1

Thickness
Thermal conductivity

Massive thermal capacity
Volumic mass

time [s]
0 500 1000 1500 2000 2500 3000

T
S

0

0.2

0.4

0.6

0.8

1

time [s]
0 500 1000 1500 2000 2500 3000

T
 S

∑
0

0.2

0.4

0.6

0.8

1

Thickness
Thermal conductivity

Massive thermal capacity
Volumic mass

For a specific slice of x
Ten time steps are computed to show the impact of every inputs through time.

Same hierarchy as for the Morris methods
Same values for first and total order⇔ no interactions between inputs.

2018/04/25 ETSN 2018 - J-B. Blanchard 68 / 82

Sensitivity analysis: Sobol indexes computation

The FAST method

Principle
DOE done with optimised-space-filling curve
Inputs have different frequencies (ω1, .., ωnX) free of
interference up to a given order M=6

xi(sj) = Gi(sin(ωisj)) ∀i = 1, .., nX

where sj ∈ [−π, π] ∀j = 1, .., nS
Evaluate the model for each points
Fourier spectrum is calculated on y at frequencies
(ωi, 2ωi, ..,Mωi)
Sensitivity index Si is

Si =

∑M
k=1(A

2
kωi

+B2
kωi

)∑nX
i=1

∑M
ki=1(A

2
kiωi

+B2
kiωi

)

Previous conclusions hold with these results
time [s]

0 500 1000 1500 2000 2500 3000

1
 S

∑
0

0.2

0.4

0.6

0.8

1

Thickness
Thermal conductivity

Massive thermal capacity
Volumic mass

2018/04/25 ETSN 2018 - J-B. Blanchard 69 / 82

Sensitivity analysis: Sobol indexes computation

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 70 / 82

Optimisation problems

Reminder on optimisation

To achieve an optimisation, one must have:
one or more criteria that we will seek to minimise (or maximise)
parameters whose values influence the criteria
possibly, some constraints on the values of these parameters
an optimisation algorithm, to decide the new value of the parameters to improve the criteria.

The optimisation is a complex problem, and there is no "universal" algorithm. Each
study has its own peculiarities and it often takes a bit of trial and error before you find

an interesting solution.

Various optimisation algorithms can be divided into two categories:
local methods: allow mono-criterion optimisation, with or without constraints. Generally
computationally efficient, but not parallelisable and tend to be trapped in local optima.
global methods: allow multi-criteria optimisation with or without constraints. Suitable for problems
with many local optima, computationally expensive but easily parallelisable

2018/04/25 ETSN 2018 - J-B. Blanchard 71 / 82

Optimisation problems

Single-objective optimisation problem

Two main packages to deal with optimisation
Minuit: ROOT’s package for SO problem, without constraint. It provides two algorithms

Simplex: does not use first derivatives, insensitive to local optima, but no guarantee of convergence.
Migrad: fairly sophisticated gradient descent algorithm, able to escape from some local optima.

NLopt: Package for nonlinear optimisation. Provides algorithms for SO problem, with or without
constraint. The available algorithms through Uranie are:

Cobyla (Constrained Optimisation BY Linear Approximation)
Bobyqa (Bounded Optimisation BY Quadratic Approximation)
Praxis (PRincipal AXIS method)
MMA (Method of Moving Asymptotes)
SLSQP (Sequential Least-Squares Quadratic Programming)
LBFGS (Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm)
Newtown
VariableMetric
NelderMead
Subplexe

2018/04/25 ETSN 2018 - J-B. Blanchard 72 / 82

Optimisation problems: Mono-objective problems

Example of SO problem: code calibration

Performing a code calibration⇔ finding optimal code’s parameters minimising a
“distance” between reference values and computations.

Distances implemented in Uranie:
the root mean square deviation,

obj =
α

nS

nS∑
i=1

(y?i − ŷi)2

the weighted root mean square deviation.

obj = α

nS∑
i=1

(y?i − ŷi)2

σ2
i

To calibrate a code in Uranie, one needs:
Reference values of the output of the code over a set of data in a file
Ù 30 θ computations is provided with “unknown” e and h value (etruth=0.01, htruth=100)
The command to run the code over the same reference data.
Ù Create a small new program that embed the code to run it over the 30 measurements
To call dedicated method so that a distance is computed from reference
addObjective(ojbname, tdsref, yrefname, outfileTested, yhatTested);

2018/04/25 ETSN 2018 - J-B. Blanchard 73 / 82

Optimisation problems: Mono-objective problems

Application to our use-case

Optimisation step
10 20 30 40 50

O
bj

ec
tiv

e

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

e [m]
0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

]
-1

.K
-2

h
[W

.m
80

85

90

95

100

105

110

115

120

Starting point
Tested points
Final point

Optimisation criterion Trajectory in parameter space

Observations
The sensitivity with respect to e seems larger (expected)
Convergence toward the nominal values

2018/04/25 ETSN 2018 - J-B. Blanchard 74 / 82

Optimisation problems: Mono-objective problems

Multi-objective optimisation vocabulary

When several criteria must be taken into consideration,
the solution kept is always a compromise.
Multi-criteria optimisation consists in finding a set of
"acceptable" solutions according to criteria and
constraints posed.
In the diagram at top opposite, we search the values of x
which optimize the criteria f1 and f2 .
Let x1 and x2 the minimum of f1 and f2 , respectively.
For all xi < x2 , if x2 > xj > xi then

f1(xj) < f1(xi) and f2(xj) < f2(xi)

Also true for xi > x1 if x1 < xj < xi: xj dominates xi
However for x2 < xi < x1 no value of xj does improve
both criteria simultaneously (previous equation).
Compromise solutions are to be found in the area
x2 < x < x1 called the Pareto zone (P).
The group of corresponding solutions in the space of
criteria (listed below opposite) is called the Pareto front.
They are said to be non-dominated: if xa, xb ∈ P then

f1(xa) < f1(xb) and f2(xa) < f2(xb) is impossible

2018/04/25 ETSN 2018 - J-B. Blanchard 75 / 82

Optimisation problems: Multi-objectives problems

Example of multi-objective optimisation

With two antagonist criteria (crit1, crit2) depending both on x and y

General Methodology
Generate a first family of N people and then

Evaluate criteria for all people
Rank them according to criteria
Test convergence.

Converged: stop

Create new people from the best λN
Start all over

x
1− 0.5− 0 0.5 1

y

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

Parameters spaceFirst family

crit1
1.2− 1− 0.8− 0.6− 0.4− 0.2−

cr
it2

0.9−

0.8−

0.7−

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

0

Objectives spaceFirst family

2018/04/25 ETSN 2018 - J-B. Blanchard 76 / 82

cr
it1

1.1−

1−

0.9−

0.8−

0.7−

0.6−

0.5−

0.4−

0.3−

x
1− 0.5− 0 0.5 1

y

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8
cr

it2

0.8−

0.7−

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

x
1− 0.5− 0 0.5 1

y

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

Optimisation problems: Multi-objectives problems

Example of multi-objective optimisation

With two antagonist criteria (crit1, crit2) depending both on x and y

General Methodology
Generate a first family of N people and then

Evaluate criteria for all people
Rank them according to criteria
Test convergence.

Converged: stop

Create new people from the best λN
Start all over

x
1− 0.5− 0 0.5 1

y

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

Parameters spaceFirst family
Pareto set

crit1
1.2− 1− 0.8− 0.6− 0.4− 0.2−

cr
it2

0.9−

0.8−

0.7−

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

0

Objectives spaceFirst family
Pareto front

2018/04/25 ETSN 2018 - J-B. Blanchard 76 / 82

cr
it1

1.1−

1−

0.9−

0.8−

0.7−

0.6−

0.5−

0.4−

0.3−

x
1− 0.5− 0 0.5 1

y

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8
cr

it2

0.8−

0.7−

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

x
1− 0.5− 0 0.5 1

y

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

Optimisation problems: Multi-objectives problems

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 77 / 82

Combining modules

Combining techniques

Blocks as introduced previously can be combined to get new
techniques.

Efficient Global Optimisation (EGO)
From a small database (here 8 points)

Construct a kriging model
Compute the Expected Improvement with the
kriging model

Ù using genetic algorithm to get the minimum t∗

Compute the real new value with the code at t∗

Reconstruct the kriging on the database + t∗

Continue this process iteratively. . .

Ongoing work to parallelise this process
Typically used for very time/cpu consuming code.
Investigating different approaches to estimate the new
points.

x1
0 5 10 15 20

200−

0

200

400

Database
New point in database
Real unknown values
Estimated values and uncertainties

time
0 5 10 15 20

E
I

50−
40−
30−
20−
10−
0

2018/04/25 ETSN 2018 - J-B. Blanchard 78 / 82

Combining modules: EGO

Combining techniques

Blocks as introduced previously can be combined to get new
techniques.

Efficient Global Optimisation (EGO)
From a small database (here 8 points)

Construct a kriging model
Compute the Expected Improvement with the
kriging model

Ù using genetic algorithm to get the minimum t∗

Compute the real new value with the code at t∗

Reconstruct the kriging on the database + t∗

Continue this process iteratively. . .

Ongoing work to parallelise this process
Typically used for very time/cpu consuming code.
Investigating different approaches to estimate the new
points.

x1
0 5 10 15 20

200−

0

200

400

Database
New point in database
Real unknown values
Estimated values and uncertainties

time
0 5 10 15 20

E
I

4−
3−
2−
1−
0

O

2018/04/25 ETSN 2018 - J-B. Blanchard 78 / 82

Combining modules: EGO

Combining techniques

Blocks as introduced previously can be combined to get new
techniques.

Efficient Global Optimisation (EGO)
From a small database (here 8 points)

Construct a kriging model
Compute the Expected Improvement with the
kriging model

Ù using genetic algorithm to get the minimum t∗

Compute the real new value with the code at t∗

Reconstruct the kriging on the database + t∗

Continue this process iteratively. . .

Ongoing work to parallelise this process
Typically used for very time/cpu consuming code.
Investigating different approaches to estimate the new
points.

x1
0 5 10 15 20

200−

0

200

400

Database
New point in database
Real unknown values
Estimated values and uncertainties

time
0 5 10 15 20

E
I

4−

2−

0

O

2018/04/25 ETSN 2018 - J-B. Blanchard 78 / 82

Combining modules: EGO

Combining techniques

Blocks as introduced previously can be combined to get new
techniques.

Efficient Global Optimisation (EGO)
From a small database (here 8 points)

Construct a kriging model
Compute the Expected Improvement with the
kriging model

Ù using genetic algorithm to get the minimum t∗

Compute the real new value with the code at t∗

Reconstruct the kriging on the database + t∗

Continue this process iteratively. . .

Ongoing work to parallelise this process
Typically used for very time/cpu consuming code.
Investigating different approaches to estimate the new
points.

x1
0 5 10 15 20

200−

0

200

400

Database
New point in database
Real unknown values
Estimated values and uncertainties

time
0 5 10 15 20

E
I

0.6−

0.4−

0.2−

0

O

2018/04/25 ETSN 2018 - J-B. Blanchard 78 / 82

Combining modules: EGO

Outline

The ROOT project
CInt, the C++ interpreter
TTree, the way to handle data

The Uranie project
Organisation and documentation
The modular organisation

Use-case & work-flow
The temperature exchange toy-model
Schematic workflow examples

The dataserver structure
Import/export data
Variables & statistical operations

Launching functions or codes
Simple case: functions
The external code

Surrogate model generation
Neural networks

Gaussian Process (kriging)
Chaos Polynomial expansion

The sampler module
Deterministic approach
Stochastic approach

Sensitivity analysis
Screening methods
Sobol indexes, theoretical introduction
Sobol indexes computation

Optimisation problems
Mono-objective problems
Multi-objectives problems

Combining modules
EGO

Developpement and future plans
Moving to ROOT6
Methodological improvements

2018/04/25 ETSN 2018 - J-B. Blanchard 79 / 82

Developpement and future plans

ROOT v6 & Jupyter Notebook

Moving to ROOT v6 brings :
the opportunity to be C++11 compliant
the clang compiler in LLVM
the new C++11 interpreter cling

Possibility to use Jupyter Notebook
The Jupyter Notebook is a web application that allows you to create and share documents that
contain live code, equations, visualisations and explanatory text.
It allows also different kernels
Ù IPython is the reference Jupyter kernel, providing a powerful environment for interactive
computing in Python
Ù ROOT (Cling) now offers a Jupyter kernel (54th entry in the list with other languages like :
Bash, Matlab, Scilab, PHP, Perl, Erlang, Go, Javascript, ..)

Caveat: not yet available for Windows.

2018/04/25 ETSN 2018 - J-B. Blanchard 80 / 82

Developpement and future plans: Moving to ROOT6

ROOT v6 & Jupyter Notebook

Moving to ROOT v6 brings :
the opportunity to be C++11 compliant
the clang compiler in LLVM
the new C++11 interpreter cling

Possibility to use Jupyter Notebook
The Jupyter Notebook is a web application that allows you to create and share documents that
contain live code, equations, visualisations and explanatory text.
It allows also different kernels
Ù IPython is the reference Jupyter kernel, providing a powerful environment for interactive
computing in Python
Ù ROOT (Cling) now offers a Jupyter kernel (54th entry in the list with other languages like :
Bash, Matlab, Scilab, PHP, Perl, Erlang, Go, Javascript, ..)

Caveat: not yet available for Windows.

2018/04/25 ETSN 2018 - J-B. Blanchard 80 / 82

Developpement and future plans: Moving to ROOT6

Plans for the future

Technical improvements
Parallelise the EGO estimation
Porting more methods on GPU (kNN and ANN so far)
Move to ROOT v6, to get the new C++ on the flight-compiler

Methodological improvements
Combine Hamiltonian Markov-chain and ANN
Get new sensitivity indexes (Shapeley)
Bayesian calibration (through MCMC algorithms in non linear settings)
Test and improve many-criteria algorithms from VIZIR

Any justified request from the community

Feel free to test the platform
The code is available here: http://sourceforge.net/projects/uranie

All documentations are embedded in the archive
We give 2-3 formation sessions a year (in France)

More information can be found in our recent paper (submitted to CPC):
http://arxiv.org/abs/1803.10656

2018/04/25 ETSN 2018 - J-B. Blanchard 81 / 82

Developpement and future plans: Methodological improvements

http://sourceforge.net/projects/uranie
http://arxiv.org/abs/1803.10656

Commissariat à l’énergie atomique et aux énergies alternatives Direction de l’énergie nucléaire

Centre de Saclay 91191 Gif-sur-Yvette Cedex Département de modélisation des systèmes et structures

T. +33 (0)1 69 08 73 20 F. +33 (0)1 69 08 68 86 Service de Thermohydraulique et de mécanique des fluides

Etablissement public à caractère industriel et commercial R.C.S Paris B 775 685 019

Backup outline

Backup
Use-case, theoretical explanations
Basic statistic of a sample
PDF and CDF
Matern correlation function
Example of CP expansion

QMC: Van der Corput
QMC: the dimension problem
Example of interaction
About the Morris method
Vizir genetic in a nutshell
The expected improvement definition

2018/04/25 ETSN 2018 - J-B. Blanchard 83 / 82

Backup

More details on the model I

Studying the evolution of the temperature within the sheet in fact consists in solving the heat equation
which can be written as follows:

∂T

∂t
= α

∂2T

∂x2
(1)

In this equation α [m2.s−1] is the thermal diffusivity which is defined by

α =
λ

ρCρ
(2)

where λ is the thermal conductivity [W.m−1.K−1], Cρ is the massive thermal capacity [J.kg−1.K−1] and ρ
is the volumic mass [kg.m−3]. There are three conditions used to resolve the heat equation, the first
one being the initial temperature

T (x, t = 0) = Ti (3)

the second one relies on the flow being null at the centre of the sheet

∂T

∂x

∣∣∣∣
x=0

= 0 (4)

while the last one relies on the thermal flow equilibrium at the surface of the sheet

− λ∂T
∂x

∣∣∣∣
x=e

= h(T (x = e, t)− T∞) (5)

2018/04/25 ETSN 2018 - J-B. Blanchard 84 / 82

Backup: Use-case, theoretical explanations

More details on the model II

Usually, the thermal coupling between a fluid and a solid structure is characterised by the thermal
exchange coefficient h [W.m−2.K−1]. This coefficient allows to free oneself from a complete description
of the fluid, when one is only interested in the thermal evolution of the structure (and vice-versa). Its
value depends on the dimension of the complete system, on the physical properties of both the fluid
and the structure, on the liquid flow, on the temperature difference. . . The thermal exchange coefficient
is characterised by the Nusselt number (Nu), from the fluid point of view, and by the Biot number (Bi),
from the structure point of view. In the rest of this paper, the latter will be discussed and used thanks to
the relation

Bi =
he

λ
(6)

In the specific case where the thermal exchange coefficient, h and the fluid temperature T∞ can be
considered constant, Eqn 1 has an analytic solution for all initial conditions (all the more so for the one
stated in Eqn 3), when it respects the flow conditions defined in Eqns 4 and 5. The resulting analytic
form is usually express in terms of thermal gauge θ, which is defined as

θ(x, t) =
T (x, t)− Ti
T∞ − Ti

(7)

2018/04/25 ETSN 2018 - J-B. Blanchard 85 / 82

Backup: Use-case, theoretical explanations

More details on the model III

The complete form is the following infinite serie

θ(xds, tds) = 2
∞∑
n=1

βn cos(ωnxds) exp(−1

4
ω2
ntds) (8)

where the original parameters have been changed to dimensionless ones

xds = x/e (9)

tds =
t

tD
= t× 4α

e2
= t× 4λ

e2ρCρ
(10)

Given this, the elements in the serie (Eqn 8) can be written

βn =
γn sin(ωn)

ωn(γn +Bi)
(11)

where
γn = ω2

n +B2
i (12)

and ωn are solutions of the following equation

ωn tan(ωn) = Bi (13)

2018/04/25 ETSN 2018 - J-B. Blanchard 86 / 82

Backup: Use-case, theoretical explanations

Uni-variate case: “Location” parameters

The effect of the "location" parameter is to translate the graph relative
to the standard distribution

Mean µ:

µ =
1

nS

nS∑
i=1

xi

Mode M: Value where the probability is the greatest value
α-Quantile qalpha with α ∈ [0, 1]: defined as

P[X ≤ qα] = α

Median q0.5: it is the 0.5-quantile defined as

P[X ≤ q0.5] = 0.5 = P[X ≥ q0.5]

Quartiles: q0.25, q0.5, q0.75

Extreme values : Min and Max

2018/04/25 ETSN 2018 - J-B. Blanchard 87 / 82

Backup: Basic statistic of a sample

Uni-variate case: “Dispersion” parameters

The effect of a "dispersion" parameter is to stretch/shrink the standard
distribution

Variance Var(X): measure of spread in the data about the mean Var(X) = E[(X − E(X))2], and
can be estimated by:

Var(X) =
1

nS − 1

nS∑
i=1

(xi − µ)2

Standard Deviation σ: to have an information in the same unit as the variable

σ =
√

Var(X)

Coefficient of Variation δ: σ does not indicate the degree (%) of dispersion around the mean
value µ, a non-dimensional term can be introduced:

δ =
σ

µ

Range R:
R = Max−Min

Interquartile interval H:
H = q0.75 − q0.25

2018/04/25 ETSN 2018 - J-B. Blanchard 88 / 82

Backup: Basic statistic of a sample

Uni-variate case: “Shape” parameters

Any parameter of a PDF that affect the shape of a distribution rather
than simply shifting it or stretching/shrinking it.

Moment order p: µp = E[(X − E(X))p]

µp =
1

nS

nS∑
i=1

(xi − µ)p

Skewness: γ1 is a measure of the asymmetry of the PDF

γ1 = E[

(
X − µ
σ

)3

] =
µ3

σ3
=

E(X3)− 3µσ2 − µ3

σ3

Kurtosis: γ2 is a measure of the "peakedness" of the PDF

γ2 =
µ4

σ4
;

Ù Normalised γ2: sometimes -3.0 is added to it as γ2=3.0 for N (µ, σ)

2018/04/25 ETSN 2018 - J-B. Blanchard 89 / 82

Backup: Basic statistic of a sample

Uni-variate case: illustration of some parameters

x
4− 2− 0 2 4 6

P
D

F

0

0.005

0.01

0.015

0.02

0.025

R = Max-Min = (5.71) - (-4.7) = 10.4

 0.999± = 1 σ ± µ

 = 1.35
0.25

 - q
0.75

H = q

 = 0.00227
1

γSkewness:

 = 3.01
2

γKurtosis:

 = 0.997δC. variation:

)µMean (

)
0.5

Median (q

Mode

x
0 10 20 30 40 50 60 70

P
D

F

0

0.005

0.01

0.015

0.02

0.025

0.03

R = Max-Min = (65.6) - (0.0366) = 65.5

 5.2± = 9.01 σ ± µ

 = 6.58
0.25

 - q
0.75

H = q

 = 1.16
1

γSkewness:

 = 5.04
2

γKurtosis:

 = 0.577δC. variation:

)µMean (

)
0.5

Median (q

Mode

x
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
D

F

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

R = Max-Min = (2) - (0.288) = 1.71

 0.24± = 1.5 σ ± µ

 = 0.334
0.25

 - q
0.75

H = q

 = -0.589
1

γSkewness:

 = 3.08
2

γKurtosis:

 = 0.16δC. variation:

)µMean (

)
0.5

Median (q

Mode

x
1− 0.5− 0 0.5 1 1.5 2 2.5 3

P
D

F

0

0.001

0.002

0.003

0.004

0.005

0.006

R = Max-Min = (3) - (-1) = 4

 1.15± = 0.998 σ ± µ

 = 2
0.25

 - q
0.75

H = q

 = 0.00217
1

γSkewness:

 = 1.8
2

γKurtosis:

 = 1.16δC. variation:

)µMean (

)
0.5

Median (q

Normal Gamma

Beta

Uniform

2018/04/25 ETSN 2018 - J-B. Blanchard 90 / 82

Backup: Basic statistic of a sample

Distribution principle recap

For every random variable X : Ω→ R
PDF (Probability Density Function): if the random variable X has a density fX , where fX is a
non-negative Lebesgue-integrable function, then

P {a ≤ X ≤ b} =

∫ b

a

fX(s)ds

CDF (Cumulative Distribution Function): the function FX : R→ [0, 1] , given by

FX(a) =

∫ a

−∞
fX(s)ds, a ∈ R

Ù One might find CCDF for Complementary CDF, simply defined as CCDF (a) = 1− CDF (a)

x
40 50 60 70 80 90 100

eP
D

F

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

eC
D

F

0

0.2

0.4

0.6

0.8

1

2018/04/25 ETSN 2018 - J-B. Blanchard 91 / 82

Backup: PDF and CDF

Example of distribution for the main laws I

2018/04/25 ETSN 2018 - J-B. Blanchard 92 / 82

Backup

Example of distribution for the main laws II

2018/04/25 ETSN 2018 - J-B. Blanchard 93 / 82

Backup

Example of distribution for the main laws III

2018/04/25 ETSN 2018 - J-B. Blanchard 94 / 82

Backup

Example of distribution for the main laws IV

2018/04/25 ETSN 2018 - J-B. Blanchard 95 / 82

Backup

Example of distribution for the main laws V

2018/04/25 ETSN 2018 - J-B. Blanchard 96 / 82

Backup

Example of distribution for the main laws VI

2018/04/25 ETSN 2018 - J-B. Blanchard 97 / 82

Backup

Example of distribution for the main laws VII

2018/04/25 ETSN 2018 - J-B. Blanchard 98 / 82

Backup

Example of distribution for the main laws VIII

2018/04/25 ETSN 2018 - J-B. Blanchard 99 / 82

Backup

Parameters for matern function I

c(δx) =
σ2

Γ(ν)2ν−1

(
2
√
ν
δx

l

)ν
Kν

(
2
√
ν
δx

l

)
.

Variation of the variance σ

2018/04/25 ETSN 2018 - J-B. Blanchard 100 / 82

Backup: Matern correlation function

Parameters for matern function II

c(δx) =
σ2

Γ(ν)2ν−1

(
2
√
ν
δx

l

)ν
Kν

(
2
√
ν
δx

l

)
.

Variation of the correlation length l

2018/04/25 ETSN 2018 - J-B. Blanchard 101 / 82

Backup: Matern correlation function

Parameters for matern function III

c(δx) =
σ2

Γ(ν)2ν−1

(
2
√
ν
δx

l

)ν
Kν

(
2
√
ν
δx

l

)
.

Variation of the smoothness ν

2018/04/25 ETSN 2018 - J-B. Blanchard 102 / 82

Backup: Matern correlation function

Chaos polynomial expansion example I

The interpretation of the polynomial coefficients as Sobol’s coefficients is strongly relying on the
hypothesis that the probability laws have been properly defined and that their decomposition is done on
their natural polynomial basis :

Legendre Hermite Laguerre Jacobi
Uniform X
Normal X
Exponential X
Beta X

From there, with p = 2 one obtains 6 coefficients: β0,0, β1,0, β0,1, β2,0, β0,2, β1,1. These coefficients are
characterising the surrogate model and can be used, when the inputs are independent, to estimate
the corresponding Sobol’s coefficients

SU1 =
β2

1,0 + β2
2,0

Var(Y)
and SN1 =

β2
0,1 + β2

0,2

Var(Y)
,

SUT =
β2

1,0 + β2
2,0 + β2

1,1

Var(Y)
and SNT =

β2
0,1 + β2

0,2 + β2
1,1

Var(Y)
.

Var(Y) =
∑
|α|1≤2

β2
α

2018/04/25 ETSN 2018 - J-B. Blanchard 103 / 82

Backup: Example of CP expansion

Logic behind the Van der Corput implementation

k k in base 2 φ(k) in base 2 xk
0 0 0.0 0
1 1 0.1 1/2
2 10 0.01 1/4
3 11 0.11 3/4
4 100 0.001 1/8
5 101 0.101 5/8
k am−1. . . a1a0 0.a0a1. . . am−1

∑m−1
l=0 al2

−(l+1)

Representing them on a normalised line for 1, 2, 3, 4 bites in 2-base

With more than one dimension, the idea is the same using other prime number as
basis (2, 3, 5, . . .)

0 1
I

k=0
I

k=1
I

k=2
I

k=3
I

k=4
I

k=5
I

k=6
I

k=7
I

k=8
I

k=9
I

k=10
I

k=11
I

k=12
I

k=13
I

k=14
I

k=15

2018/04/25 ETSN 2018 - J-B. Blanchard 104 / 82

Backup: QMC: Van der Corput

QMC: the dimension problem

2018/04/25 ETSN 2018 - J-B. Blanchard 105 / 82

Backup: QMC: the dimension problem

Toy model for interaction I

Considering the function Y = g(X) = X1X2, where Xa = N (µa, σa) are independent
random variable, for a = 1, 2

E(Y) =

∫ −∞
−∞

∫ −∞
−∞

x1x2fX1,X2
(x1, x2)dx1dx2

The random variables are independent so

fX1,X2
(x1, x2) = fX1

(x1)fX2
(x2)

One can then develop the expectation formula

E(Y) =

∫ −∞
−∞

∫ −∞
−∞

x1x2fX1,X2(x1, x2)dx1dx2

=

(∫ −∞
−∞

x1fX1(x1)dx1

)(∫ −∞
−∞

x2fX2(x2)dx2

)
= E(X1)E(X2)

= µ1µ2

2018/04/25 ETSN 2018 - J-B. Blanchard 106 / 82

Backup: Example of interaction

Toy model for interaction II

Considering the variance one can start from this:

V (Y) = E(Y 2)− E(Y)2

Developing the expectation

E(Y 2) =

∫ −∞
−∞

∫ −∞
−∞

(x1x2)
2fX1,X2

(x1, x2)dx1dx2

=

(∫ −∞
−∞

x2
1fX1

(x1)dx1

)(∫ −∞
−∞

x2
2fX2

(x2)dx2

)
= E(X2

1)E(X2
2)

Also for a = 1, 2

V (Xa) = E(X2
a)− E(Xa)

2

E(X2
a) = V (Xa) + E(Xa)

2

E(Y 2) = (V (X1) + E(X1)
2)(V (X2) + E(X2)

2)

= (σ2
1 + µ2

1)(σ
2
2 + µ2

2)

Putting these results together

V (Y) = (σ2
1 + µ2

1)(σ2
2 + µ2

2)− (µ1µ2)2

= µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2

The variance V (Y) cannot be explained neither by X1 alone, or by X2 alone, their
interaction has to be taken into account

Warning! Interaction = impact of the coupling of factors on a considered
output. Independence = evolution of the values taken by two factors.

2018/04/25 ETSN 2018 - J-B. Blanchard 107 / 82

Backup: Example of interaction

Caution about the Morris method

The default ∆ is chosen after optimisation to be ∆Morris = p
2

1
p−1

⇒Works fine as long as the output is not periodic w.r.t one input.

x1
3− 2− 1− 0 1 2 3

O
ut

pu
t o

f f
un

ct
io

n[
Is

hi
ga

m
i]

10−

5−

0

5

10

15

Scatterplot Ishigami:x1

x2
3− 2− 1− 0 1 2 3

O
ut

pu
t o

f f
un

ct
io

n[
Is

hi
ga

m
i]

10−

5−

0

5

10

15

Scatterplot Ishigami:x2

x3
3− 2− 1− 0 1 2 3

O
ut

pu
t o

f f
un

ct
io

n[
Is

hi
ga

m
i]

10−

5−

0

5

10

15

Scatterplot Ishigami:x3

x1

x2

x3

0 1

1

1

p = 6 ∆Morris = p
2 ∗ 1

p−1

•step0

•
step1

•
step2

•step3

•step0

•
step1

•
step2

•step3

p = 6 ∆ = 1
p−1

1

Vary ∆ as fifth argument of TMorris
constructor to check the impact

2018/04/25 ETSN 2018 - J-B. Blanchard 108 / 82

Backup: About the Morris method

Genetic evolution in a drawing

2018/04/25 ETSN 2018 - J-B. Blanchard 109 / 82

Backup: Vizir genetic in a nutshell

The expected improvement definition

E[I(x)] = (fmin − ŷ(x))Φ

(
fmin − ŷ(x)

σ̂(x)

)
+ σ̂(x)φ

(
fmin − ŷ(x)

σ̂(x)

)

φ(.) and Φ(.) are respectively the standard normal density and its cumulative
distribution.

2018/04/25 ETSN 2018 - J-B. Blanchard 110 / 82

Backup: The expected improvement definition

	The ROOT project
	CInt, the C++ interpreter
	TTree, the way to handle data

	The Uranie project
	Organisation and documentation
	The modular organisation

	Use-case & work-flow
	The temperature exchange toy-model
	Schematic workflow examples

	The dataserver structure
	Import/export data
	Variables & statistical operations

	Launching functions or codes
	Simple case: functions
	The external code

	Surrogate model generation
	Neural networks
	Gaussian Process (kriging)
	Chaos Polynomial expansion

	The sampler module
	Deterministic approach
	Stochastic approach

	Sensitivity analysis
	Screening methods
	Sobol indexes, theoretical introduction
	Sobol indexes computation

	Optimisation problems
	Mono-objective problems
	Multi-objectives problems

	Combining modules
	EGO

	Developpement and future plans
	Moving to ROOT6
	Methodological improvements

	Backup
	Use-case, theoretical explanations
	Basic statistic of a sample
	PDF and CDF
	Matern correlation function
	Example of CP expansion
	QMC: Van der Corput
	QMC: the dimension problem
	Example of interaction
	About the Morris method
	Vizir genetic in a nutshell
	The expected improvement definition

