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Impulse Noise Removal




Salt-and-Pepper Noise

f = (f;;): true image with f; ; € [0,255].
y = (y;.j): observed noisy image.
0 with probability /2%,
Yi i = { 255 with probability /2%,
Ji with probability 1 — r%.

Noise level = r%.

y with r = 10% y with r = 50% 4



Median Filter

Noisy image

Restored image

Yi—1,5—-1 | Yi—1,5 | Yi—1,5+1 Yi—1,5—-1 | Yi—1,5 | Yi—1,j+1
Yij—1 Yi,j Yij+1 Yi,j—1 Yis Yi,j+1
Yi+1,5—1 | Yi+1,5 | Yi+1,5+1 Yi+1,5—1 | Yi+1,5 | Yi+1,5+1
sort restore

Yiv < Yip S Yis < Yiy Yie = Yiz < Yig < Yig

median



30% Salt-and-Pepper Noise

Median filter

Every pixel is modified, hence fuzziness and blurring



Adaptive Median Filter

Noisy image
Yi—1,j—1 | Yi—1,5 | Yi—1,j+1
Yij—1 Yij Yi,j+1
Yi+1,5—1 | Yi+1,5 | Yi+1,5+1

sort l

Yiv < Yip < Yis < Yiy Yie < Yir < Yis < Yig
< > median /

If median = y;, or y;,, then increase window size.



30% Salt-and-Pepper Noise

Medjan
ter




But ...at 70% Salt-and-Pepper Noise

Adaptive median filter

Replacement of noise by median cannot preserve edges



|, Fitting Term for Impulse Noise

Nikolova, J. Math. Imaging & Vision, (2004)

¢1-norm data
fitting term

F(f) :Z [|fi,j_yi,j| +0 ] Z Qoa(fi,j_fm,n;

iaj (m,n)EV@;,j

edge-preserving regularization term

[ Non-smooth data-fitting term (smooth data
left unchanged)

[J Edge-preserving potential function:

(2], total variation
walt) = < |t|%, l<a<?,
| Va+ 12, a > 0.
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0% Salt-and-Pepper Noise

11



Two-Phase Method

Chan, Ho, and Nikolova, IEEE TIP (2005)

Median-type Filter + Variational Method

[ Phase 1: Detect noise candidate set N by
Adaptive Median Filter

0 Phase 2: Restore pixels in N by ¢; model

man[|fz,j Yij| + 05 Z walfij — fmn)}v

(mn)eV; ;

subJect to fi; =y, if (4,7) ¢ N

Solve the optimization problem on irregular grid-points N.
12



Numerical Results

7

Variational Method

AMF+Variation

13



Numerical Results

7

Variational Method

AMF+Variation
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Segmentation: Problem Setting and Notation

Given a corrupted image f,

want a K-phase K —
segmentation =
4 )
Q) \ I' =U;Q;,
find a piecewise g = ¢; in §);,
constant approximation 1 =1,2,3,4
- /

with K constant
regions

16



Mumford-Shah Model (1989) [cited 5,800+ time]

Mumford-Shah Energy
EMS (97 P)

minimize .
'

Il

% fQ(f — g)zdzl,‘ -+ % fQ\l" \Vg\zdm -+ Length(r)

g Data fidelity: h g Regularization: h g Regularization: h
control g not far impose smoothness require boundary
away from f of gon Q\ T [' be short
\_ J \_ J \_ J

Highly non-convex problem
17



Simplifying Mumford-Shah Model

Mumford-Shah Energy Simplify it:
Vg=0on Q\T

~

q/lultiphase Chan-Vese Model (02)
(minimizer § is piecewise constant):

Envs({eit, T Z/ (f—¢i)?+Length(T)
- /

18



Stage One: Convex Variant of the M-S Model

Restrict:
g € WH2(Q)

Il
+

appr()leated

Convex M-S Energy
E(g)

Mumford-Shah Energy
EMS (97 P)

19



Two-Stage Segmentation Method

Convex M-S Energy

< stage 1 <—
E(9) /

Il
Gt 07> + Cahalvari >+ (Calvolis
|

[ smooth solution g ]

A4

A4

Threshold g to
piecewise constant

20



Stage One: Extension to Blur/Projected Problems
Convex M-S Energy

stage 1
E(g)

Il
Gt =0ri> + Cahalvari >+ Calvolis

[+ Ag+n

LD :

[ Extendable to images corrupted by blur or projection A

[ Convex model with unique solution §
21



Our Two-stage Segmentation Algorithm

Given f

Only 1 convex
problem to solve

Stage 1: solve g in

\
min, {)‘ Hf AQH2Jr
No iterations =t ||Vg||2 + |Vg|l1 }
between
Stages 1
and Stage 2: determine
Stages 2 threshold p from g

by mean or K-mean

l

K phases

§<0.19



Advantages of Smooth-&-threshold (SaT) Method

Given f
l Advantages
Stage 1: solve g in L] Stage 1 model for finding § is
min, {5/ f — Ag||3+ convex
ElIVgll3 + ||Vg||1} [] Stage 2 uses the same § when
l thresholds p; or K change
(No need to recompute §)
Stage 2: determine [J No need to fix K at the very
thresholds {p; } 271 beginning
from g L] Easily adapted to different
l kinds of corruptions (e.g. blur,
projection, non-Gaussian noise)

K phases

23



4-phase Segmentation of Noisy and Blurry Image

Noisy & blurry Yuan et al. (10) Li et al. (10)
1

Sandberg et al. (10)  Steidl et al. (12)  Our 4 phases from ¢
using K-means p; 24



Segmentation under Poisson or Gamma Noise

First stage: given f, solve

min{)\/ (.Ag—flogflg)da:—kﬁ/ \Vg|2dx—|—/ \Vg\d:z:}.
g Q 2 Jo Q

L] data fitting term good for Poisson noise from MAP analysis
L) also good for multiplicative Gamma noise (Steidl and Teuber (10))

L) objective functional is convex (solved by Chambolle-Pock)

[ admits unique solution ¢ if Ker(A) N Ker(V) = {0}

Second stage: threshold the solution g to get the phases.

25



Fractal Tree with Gamma Noise and Gaussian Blur

Noisy & blurred

Dong et al. (10)
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Is 2-stage E

nough for Color Images?

RGB: strong inter-channel correlation

27



Less-correlated Color Space

RGB: strong inter-channel correlation

Lab channels: less correlated

Thresholding using all six-channels

28



Three-stage (SLaT) Method for Color Images

Stage 1 (smoothing): given f = (f1, f2, f3), solve

min{)\/ (Ag; — [i)?dx + E/ |ng-|2dac+/ \Vgi\da?}, i =1,2,3,
gi 0 2 Q Q

to obtain smooth unique solution § = (g1, g2, §3)-

Stage 2 (lifting):

L) transform § to another color space § = (g1, g2, g3) with less-
correlation among the channels

[ Then form the uplifted image g = (91, 92,73, 91,92, G3)

Stage 3 (thresholding): Use K-means to threshold uplifted image
g to get the phases.

29



2-phase Segmentation for Noisy Color Image

Clean image Noisy image Li et al.
Pock et al. Strorath et al. SaT with thresholds

from K-means
(Gaussian noise with s.d. 0.1. 30



3-phase Segmentation for Noisy & Blurry Image

Clean image blurry & noisy Li et al. (10)

Pock et al. (09) Strorath et al. (14) SaT with thresholds
from K-means

10-pixel vertical motion blur with Poisson noise added
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4-phase Segmentation for Pixel-loss Color Image

Lietal (10

Pock et al. (09 Strorath et al. (14 Sa'l with pr—4

60% pixel loss with Poisson noise added

Cai, C., Nikolova, and Zeng, J. Sci. Comput., (2017
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Hyper-spectral Image Classification

analyze the material for each pixel

spatial
Our method Training pixels
16 classes 10% = 1048 pixels

of materials

34



DudSinoetSaid-Vietbshiold (SaT) Approach

yd
spectral // spectral
/
/

>

classification /
map L

stage 1
SVM

g ““_ probability
in class k

class 1 map class £ map

staga <y smapshing




Indian Pines Data Set

L] Data size: 145 x 145 (spatial) x 200 (spectral)
L] Close spectrum between classes

Alfalfa

Corn-notill

Corn-mintill

Corn

10000 19000 10000 10000
# of training: 10 # of training: 143 # of training: 83 # of training: 24
5000 w”l.\"l, ~N 000 8 & 5000 (ARSI 5000 \A
T R A gl i ﬁ
SN A — A — W o VW,
0 0 0 0
0 50 100 150 200 19) 50 o0 50 200 u) 50 1919) 50 200 9] 50 oo 50 200
Grass-pasture Grass-trees Grass-pasture-mowed Hay-windrowed
10000 10000 10000 10000
# of training: 48 # of training: 73 # of training: 10 # of training: 48
5000 |2 5000 |, 5000 F%Mﬁ\m\f\ 5000 NM
g W ' ﬂho\ /
f"\% — ﬂ A= L UV e N M:Jf“\m——q._..,
0 0 0 0
U oU T00 190 2U0 0] 18] 100 100 200 0] [210] 100 100 200 0 a0 100 150 200
Oats Soybean-notill Soybean-mintill Soybean-clean
10000 10000 10000 10000
# of training: 10 # of training: 97 # of training: 246 # of training: 59
5000 N\Jﬁ“\'ﬁ 000 M 5000 (/S 5000 (A
0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 a0 100 150 200 0 50 100 150 200
Wheat Woods Buildings-Grass-Trees-Drives Stone-Steel-Towers
10000 10000 10000 10000
# of training: 21 # of training: 127 # of training: 39 # of training: 10
5000 5000 5000 [As 5000 r%
Phom
0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
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Indian Pines Data Set

Error heat map over 10 trials with random 10% training pixels

ground-truth

Background

Alfalfa

Corn-no till
Corn-mill till

Corn

Grass/pasture
Grass/trees
Grass/pasture-mowed
Hay-windrowed

Oats
Soybeans-no till
Soybeans-mill till
Soybeans-clean
Wheat

Woods
Bidg-Grass-Tree-Drives
Stone-steel lowers

label color

SVM-CK
3, 6.32s]

SVM
2, 5.98s]

MFASR
[10, 443s]

SC-MK
9, 9.44s]

[no. of parameters, time

SaT method
5, 8.24s]

in seconds]

O=2NWAUION®OWOS

heatmap
colorbar
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Comparison with Other Methods

Accuracy over 10 random trials with random 10% training pixels

SVM | SVM-CK | EPF | SC-MK | MFASR Sa'T gain
overall | -q zeor | 99.11% | 93.34% | 97.83% | 97.88% | 98.83% | 0.95%
accuracy
WETAEE 1 80.11% | 92.68% | 95.95% | 98.35% | 97.91% | 98.88% | 0.35%
a(:(:uracy
kappa | 76.90% | 91.01% | 92.36% | 97.52% | 97.58% | 98.66% | 1.08%

L] overall accuracy: percentage of correctly classified pixels

L] average accuracy: average of the accuracy in each class

[] kappa: Cohen’s kappa coefficient

SVM [Melgani et al., 2004], SVM-CK [Camps-Valls et al., 2006],
EPF [Kang et al., 2014], SC-MK [Fang et al., 2015],
MFASR [Fang et al., 2017].
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Effect of the High-order Smoothing Term

Accuracy over 10 random trials with random 10% training pixels

SaT with ||Vg||? | SaT without ||Vg||* | gain

overall 98.83% 97.26% 1.57%
accuracy

Average 08.88Y% 95.89% 2.99%
a(:curacy

kappa 98.66% 096.86% 1.80%

L] overall accuracy: percentage of correctly classified pixels

L] average accuracy: average of the accuracy in each class

[] kappa: Cohen’s kappa coefficient

C., Kan, Nikolova, and Plemmons, arXiv 1806.00836.
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3D Imaging by 2D (Depth from Focus)

3D localization by scanning
sequence of 2D images
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Conventional PSF for Single Point Source

pel 0
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3D Imaging by 2D (Depth from De-focus)

3D localization by rPSF

Engineer PSF to obtain
3D info from one 2D snapshot

100

80

60 *9{6

20

400
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Single Lobe Rotating PSF

\Q

+24 rad +16 rad

&

Changing Axial Depth

-16 rad

+8 rad

-8 rad

pel (
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Forward Model for Rotating PSF

[ G=N(T(AxX)) ]

rotating psf point sources

N(T(Ax X))

45



Kullback-Leibler + Nonconvex Model

( m,n,d )
. — Xk ]
min ¢ (1, T(Ax X) = GIn(T(A* X) +b1))+u'z PR O >
X 1,7,k=1 )
\ ] |\ J
| |
KL distance for Poisson noise non-covex regularizer

L] solve by iterative reweighted ¢; algorithm
L] substitute Uy = A * X, U; = X and solve by ADMM

L] close-form solution for subproblem related to KL distance
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Numerical Result

Observed Image Estimated location in 2D
Q@
20 ¢ 6
18 o
n ® + &
16 © P +rp
14 | o @
12 e @ + g e
. . 5 “0”: ground truth
5+ @ W, . d1 .
8- & o o +”: estimated location
- o}
’ b o 69
4 # +
2 + P
80
0 60
20 20 o 40

60



Recall and Precision Accuracies

lo-0q {5-NC KL-¢4 KL-NC
Points | Recall Prec. | Recall Prec. | Recall Prec. | Recall Prec.
5} 100.00 68.91 | 97.60 89.15 | 98.93 58.64 | 100.00 97.52
10 99.60 55.95 | 94.80 83.51 | 99.40 65.24 99.40 93.69
15 08.67  56.28 | 92.80 84.77 | 98.93 58.64 | 98.40 88.60
20 97.70 56.50 | 95.20 80.92 | 98.10 57.82 | 97.70 87.49
30 96.00 55.74 | 93.93 77.77 | 94.00 56.22 | 96.20 79.75
40 93.80 52.68 | 95.40 59.34 | 93.70 54.29 | 95.00 73.35

. Number of identified true positive emitters
= Recall rate: Number of all true emitters

[] Precision rate: N

Number of identified true positive emitters

umber of all emitters identified by algorithm

Wang, C., Nikolova, Plemmons, and Prasad, arXiv 1804.04000.
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Thank You Milal




Thank You Mila!

We forever miss you!



