

Scientific Day in Memory of Prof. Mila Nikolova

My Work with Mila Nikolova

Raymond H. Chan Department of Mathematics Chinese University of Hong Kong

- 1. Impulse Noise Removal
- 2. SaT Segmentation Method
- 3. Hyperspectral Image
- 4. Rotating Point-spread Function

Impulse Noise Removal

Salt-and-Pepper Noise

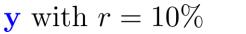
 $\mathbf{f} = (f_{i,j})$: true image with $f_{i,j} \in [0, 255]$. $\mathbf{y} = (y_{i,j})$: observed noisy image.

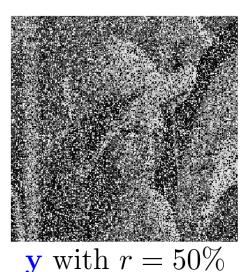
$$y_{i,j} = egin{cases} 0 \ 255 \ f_{i,j} \end{cases}$$

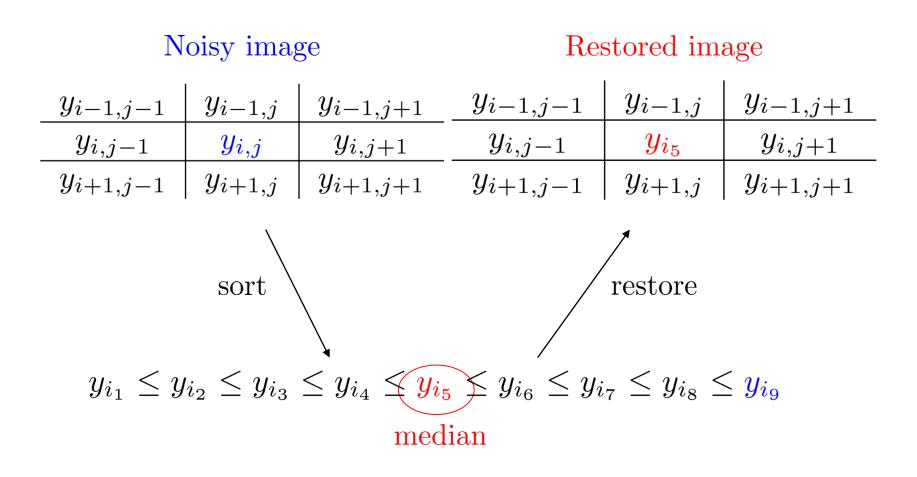
(_

with probability r/2%, with probability r/2%, with probability 1 - r%.

Noise level = r%.





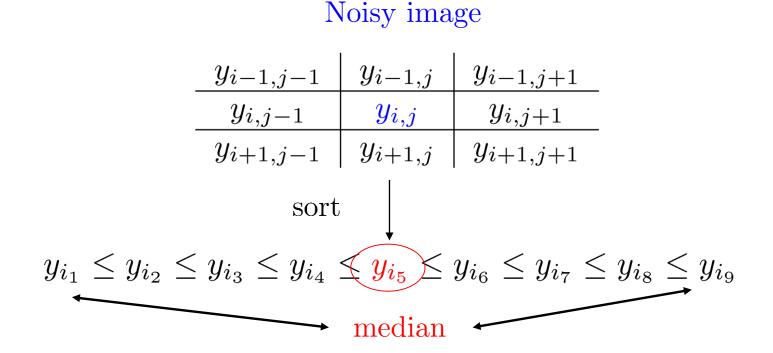


30% Salt-and-Pepper Noise

Median filter

Every pixel is modified, hence fuzziness and blurring

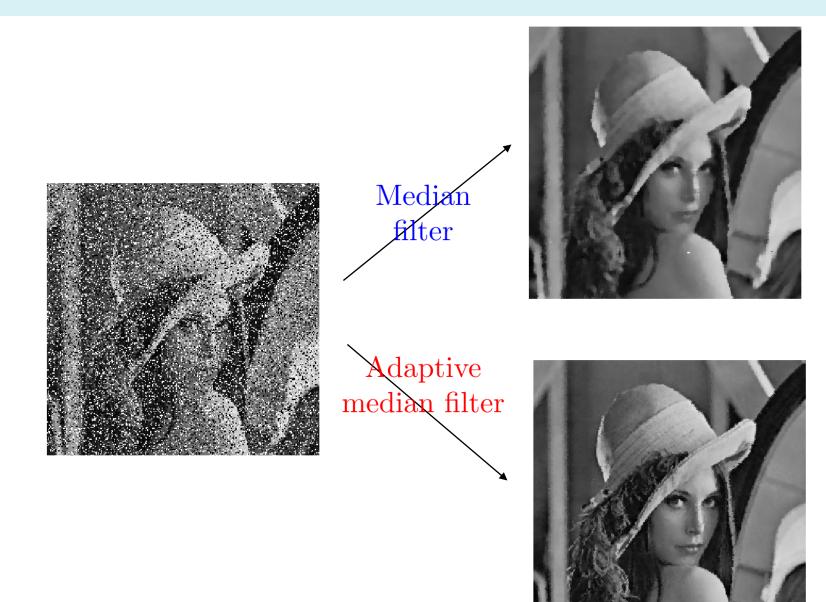
Adaptive Median Filter



If median = y_{i_1} or y_{i_9} , then increase window size.

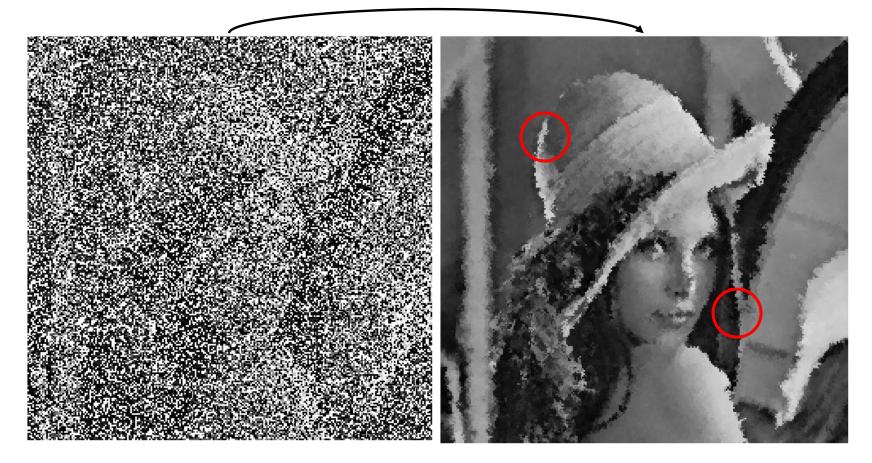
7

30% Salt-and-Pepper Noise



But ... at 70% Salt-and-Pepper Noise

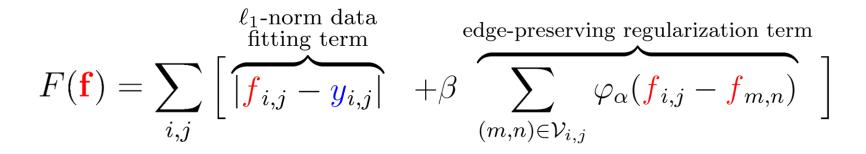
Adaptive median filter



Replacement of noise by median cannot preserve edges

l₁ Fitting Term for Impulse Noise

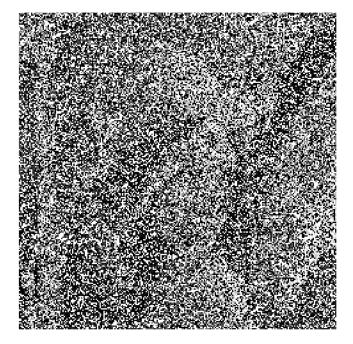
Nikolova, J. Math. Imaging & Vision, (2004)



- Non-smooth data-fitting term (smooth data left unchanged)
- \Box Edge-preserving potential function:

$$\varphi_{\alpha}(t) = \begin{cases} |t|, & \text{total variation} \\ |t|^{\alpha}, & 1 < \alpha \le 2, \\ \sqrt{\alpha + t^2}, & \alpha > 0. \end{cases}$$

70% Salt-and-Pepper Noise



 $\begin{array}{c} \ell_1 \\ model \end{array}$

Two-Phase Method

Chan, Ho, and Nikolova, IEEE TIP (2005)

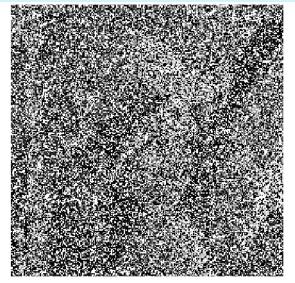
Median-type Filter + Variational Method

- \Box Phase 1: Detect noise candidate set ${\cal N}$ by Adaptive Median Filter
- \square Phase 2: Restore pixels in \mathcal{N} by ℓ_1 model

$$\begin{cases} \min_{\mathbf{f}} \sum_{i,j} \left[|f_{i,j} - y_{i,j}| + \beta \sum_{(m,n) \in \mathcal{V}_{i,j}} \varphi_{\alpha}(f_{i,j} - f_{m,n}) \right], \\ \text{subject to } f_{i,j} = y_{i,j} \text{ if } (i,j) \notin \mathcal{N} \end{cases}$$

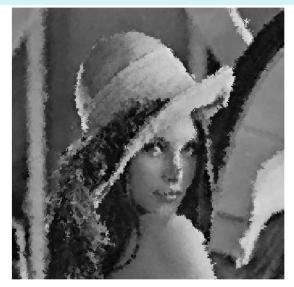
Solve the optimization problem on irregular grid-points \mathcal{N} .

Numerical Results



70% Salt-and-Pepper Noise

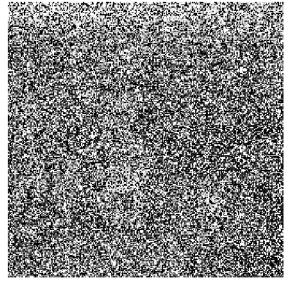
Variational Method



Adaptive Median Filter

AMF+Variation

Numerical Results



70% Salt-and-Pepper Noise

Variational Method

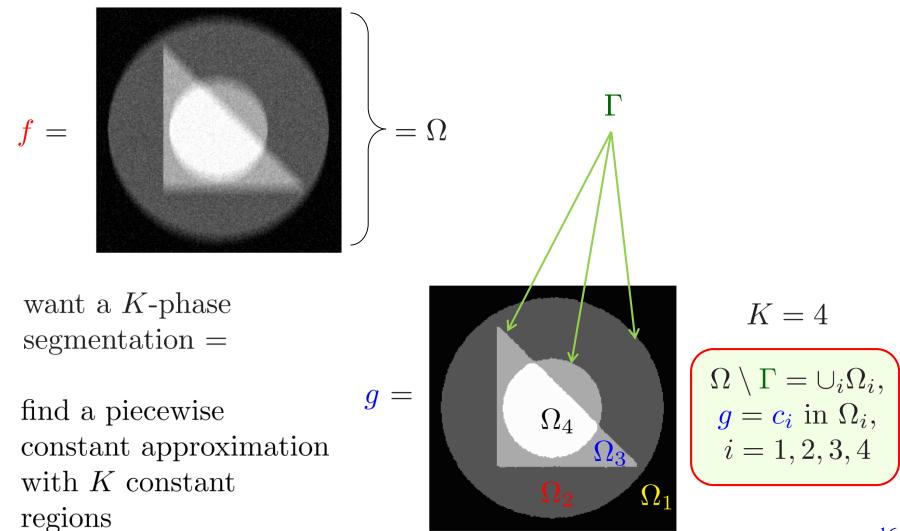
Adaptive Median Filter

AMF+Variation

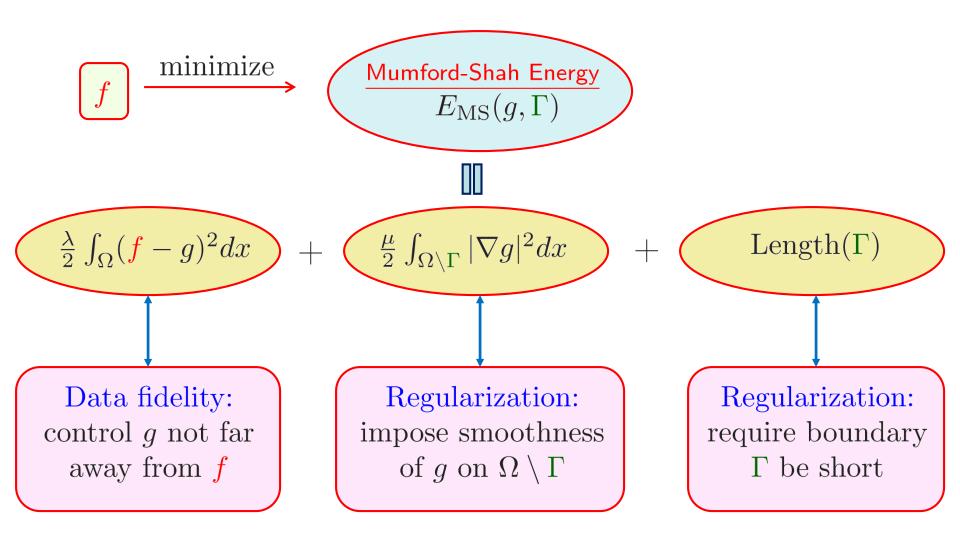
- 1. Impulse Noise Removal
- 2. SaT Segmentation Method
- 3. Hyperspectral Image
- 4. Rotating Point-spread Function

Segmentation: Problem Setting and Notation

Given a corrupted image f,

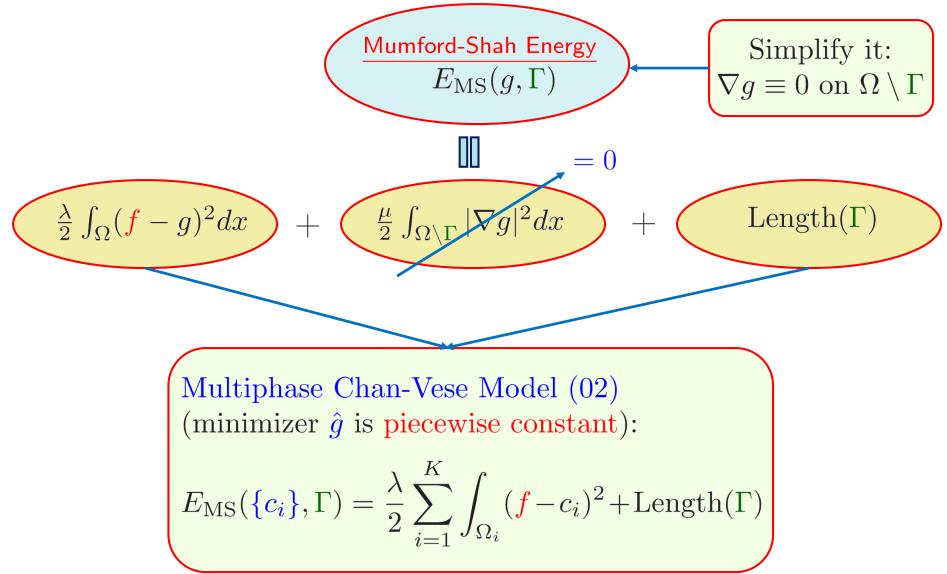


Mumford-Shah Model (1989) [cited 5,800+ time]

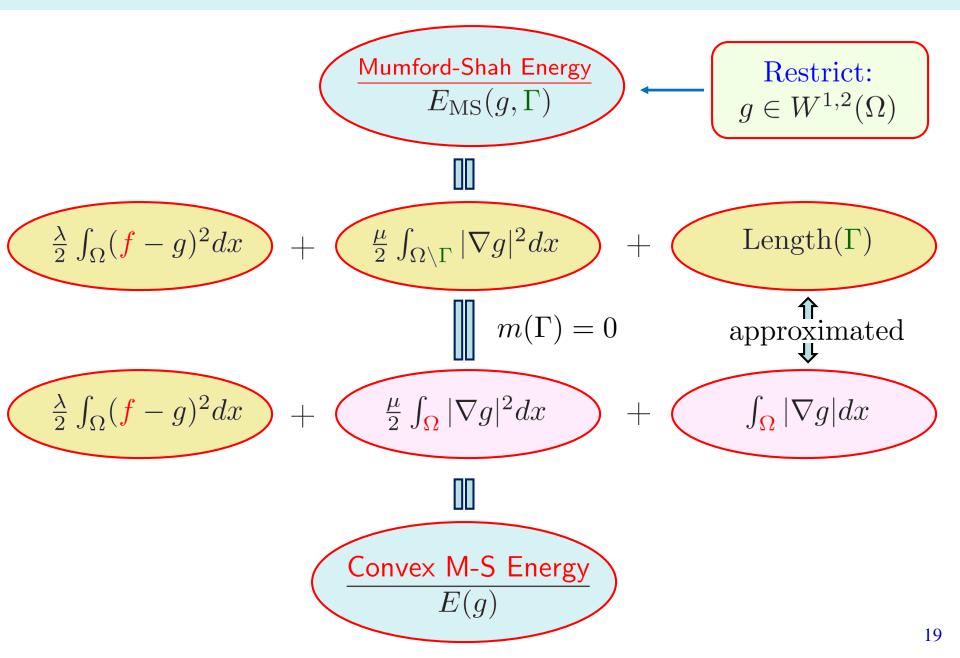


Highly non-convex problem

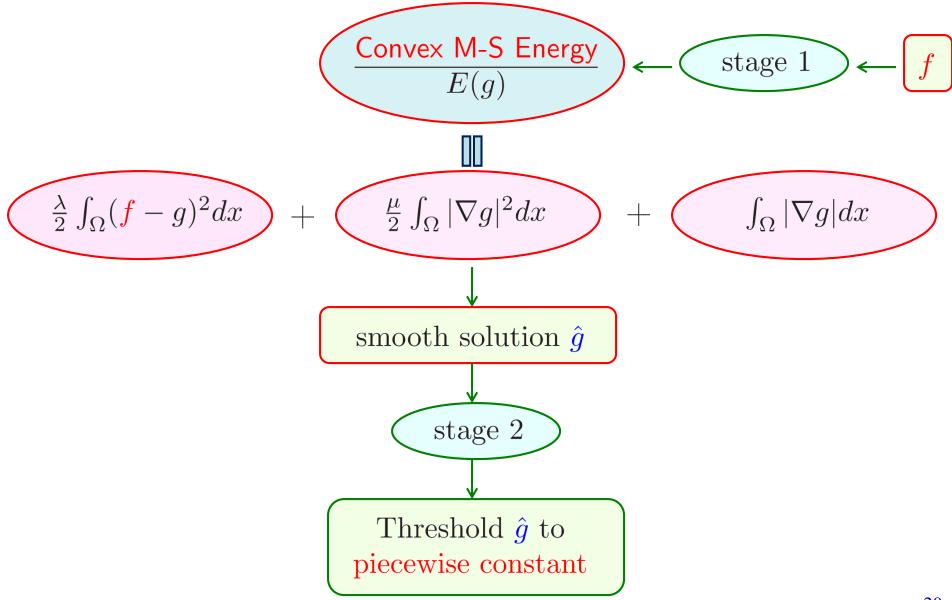
Simplifying Mumford-Shah Model



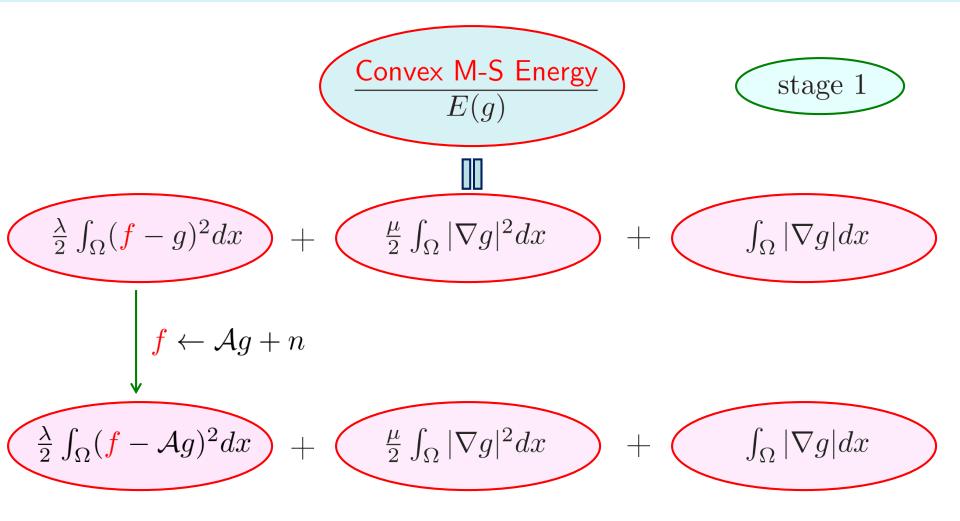
Stage One: Convex Variant of the M-S Model



Two-Stage Segmentation Method

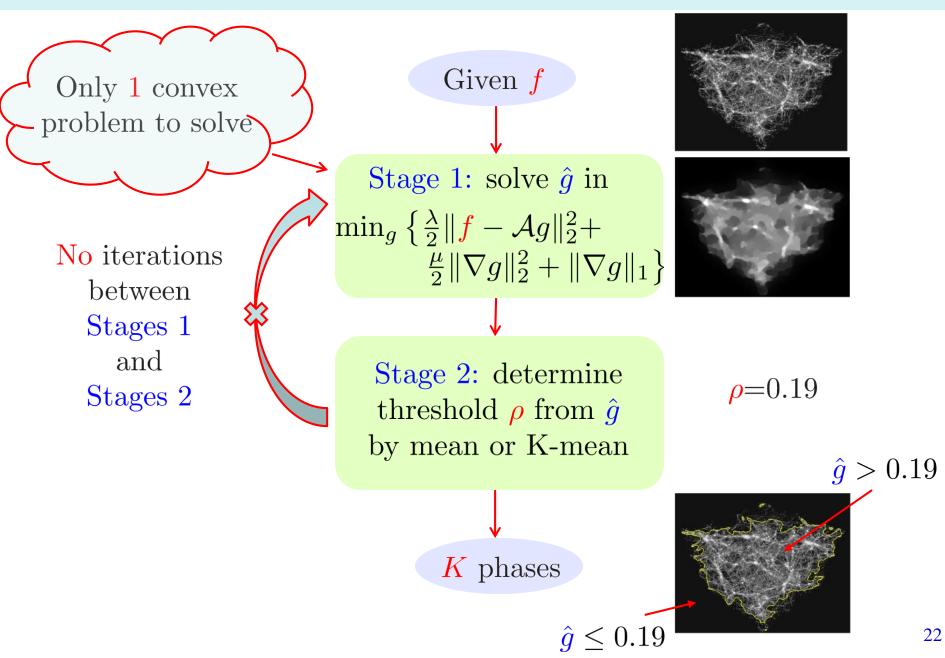


Stage One: Extension to Blur/Projected Problems

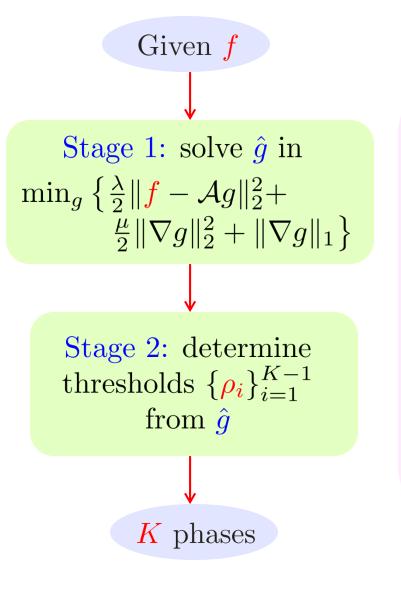


□ Extendable to images corrupted by blur or projection \mathcal{A} □ Convex model with unique solution \hat{g}

Our Two-stage Segmentation Algorithm



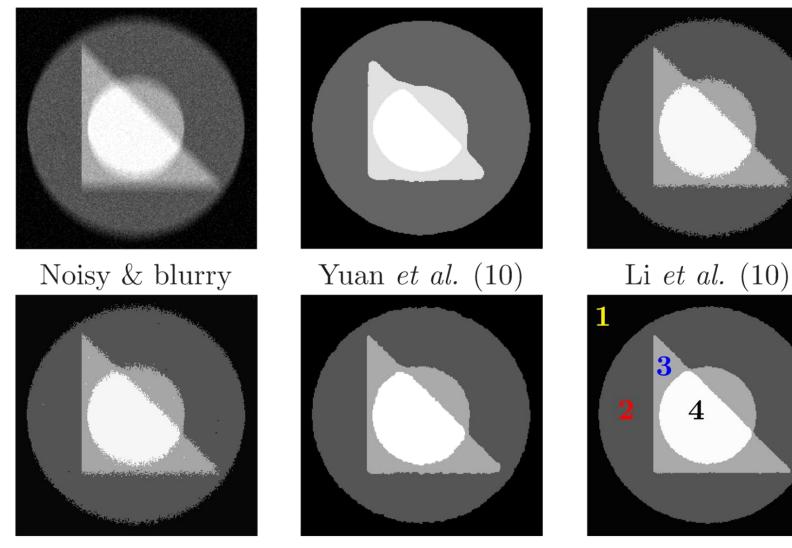
Advantages of Smooth-&-threshold (SaT) Method



Advantages

- □ Stage 1 model for finding \hat{g} is convex
- □ Stage 2 uses the same \hat{g} when thresholds ρ_i or K change (No need to recompute \hat{g})
- $\Box \text{ No need to fix } K \text{ at the very } beginning}$
- Easily adapted to different kinds of corruptions (e.g. blur, projection, non-Gaussian noise)

4-phase Segmentation of Noisy and Blurry Image



Steidl *et al.* (12)

Sandberg *et al.* (10)

Our 4 phases from \hat{g} using K-means ρ_i

Segmentation under Poisson or Gamma Noise

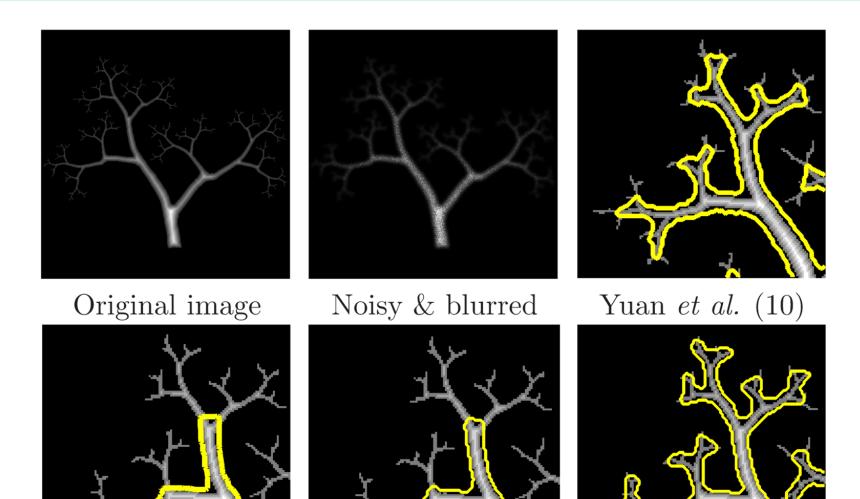
First stage: given f, solve

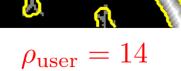
$$\min_{g} \left\{ \lambda \int_{\Omega} (\mathcal{A}g - f \log \mathcal{A}g) dx + \frac{\mu}{2} \int_{\Omega} |\nabla g|^2 dx + \int_{\Omega} |\nabla g| dx \right\}.$$

□ data fitting term good for Poisson noise from MAP analysis
□ also good for multiplicative Gamma noise (Steidl and Teuber (10))
□ objective functional is convex (solved by Chambolle-Pock)
□ admits unique solution ĝ if Ker(A) ∩ Ker(∇) = {0}

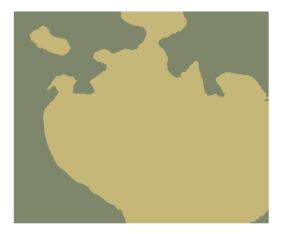
Second stage: threshold the solution \hat{g} to get the phases.

Fractal Tree with Gamma Noise and Gaussian Blur





Is 2-stage Enough for Color Images?



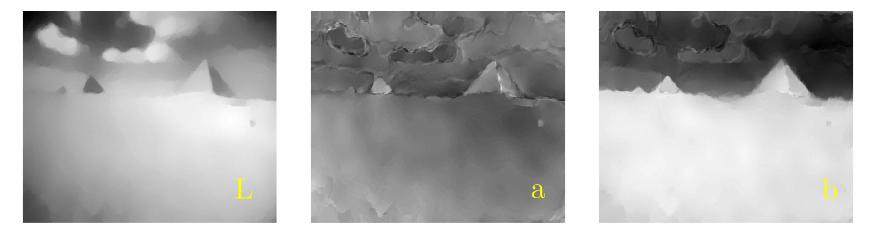
noisy image

K-mean thresholding

RGB: strong inter-channel correlation

Less-correlated Color Space

RGB: strong inter-channel correlation



Lab channels: less correlated Thresholding using all six-channels

Three-stage (SLaT) Method for Color Images

Stage 1 (smoothing): given $f = (f_1, f_2, f_3)$, solve

$$\min_{g_i} \left\{ \lambda \int_{\Omega} (\mathcal{A}g_i - \mathbf{f}_i)^2 dx + \frac{\mu}{2} \int_{\Omega} |\nabla g_i|^2 dx + \int_{\Omega} |\nabla g_i| dx \right\}, \ i = 1, 2, 3,$$

to obtain smooth unique solution $\hat{g} = (\hat{g}_1, \hat{g}_2, \hat{g}_3)$.

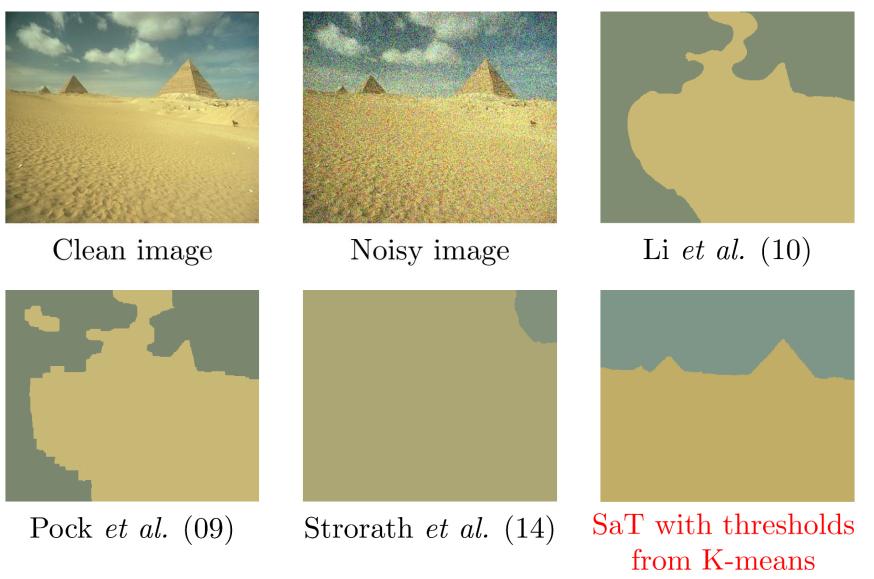
Stage 2 (lifting):

 \Box transform \hat{g} to another color space $\bar{g} = (\bar{g}_1, \bar{g}_2, \bar{g}_3)$ with less-correlation among the channels

 \Box Then form the uplifted image $g = (\hat{g}_1, \hat{g}_2, \hat{g}_3, \bar{g}_1, \bar{g}_2, \bar{g}_3)$

Stage 3 (thresholding): Use K-means to threshold uplifted image g to get the phases.

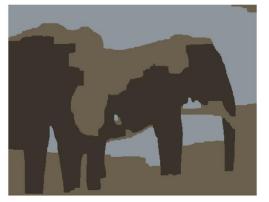
2-phase Segmentation for Noisy Color Image



Gaussian noise with s.d. 0.1.

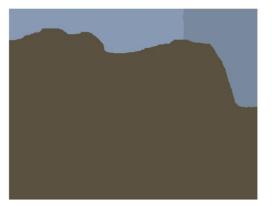
3-phase Segmentation for Noisy & Blurry Image

Clean image



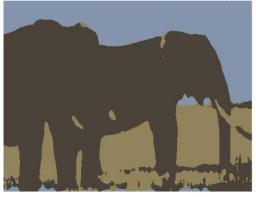
Pock et al. (09)

blurry & noisy



Strorath *et al.* (14)

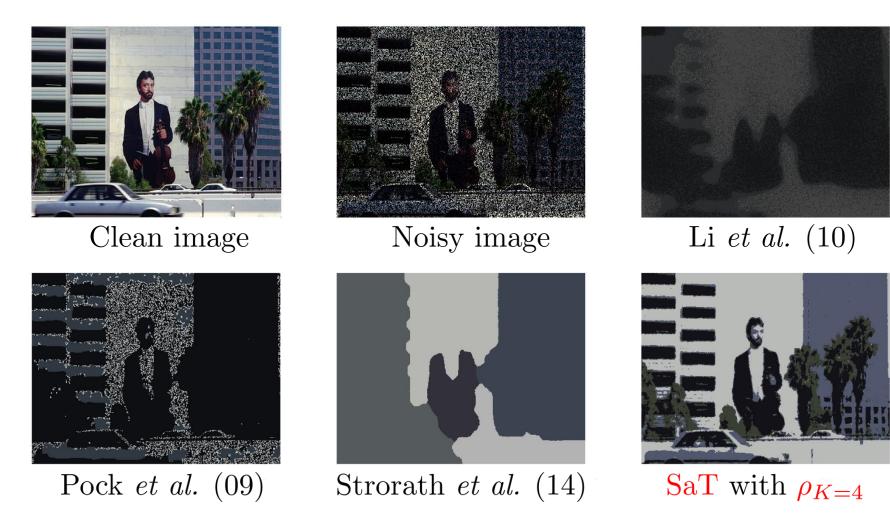
Li et al. (10)



SaT with thresholds from K-means

10-pixel vertical motion blur with Poisson noise added

4-phase Segmentation for Pixel-loss Color Image



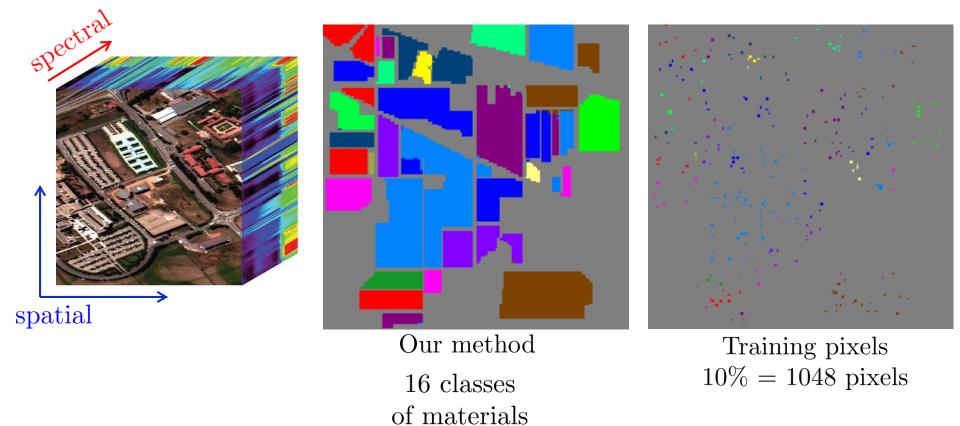
60% pixel loss with Poisson noise added

Cai, C., Nikolova, and Zeng, J. Sci. Comput., (2017)

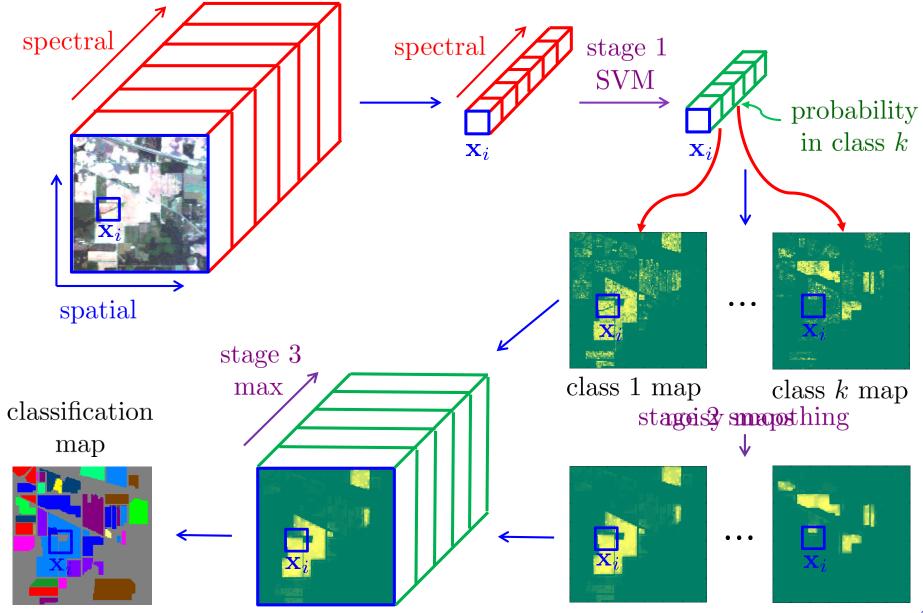
- 1. Impulse Noise Removal
- 2. SaT Segmentation Method
- 3. Hyperspectral Image
- 4. Rotating Point-spread Function

Hyper-spectral Image Classification

analyze the material for each pixel

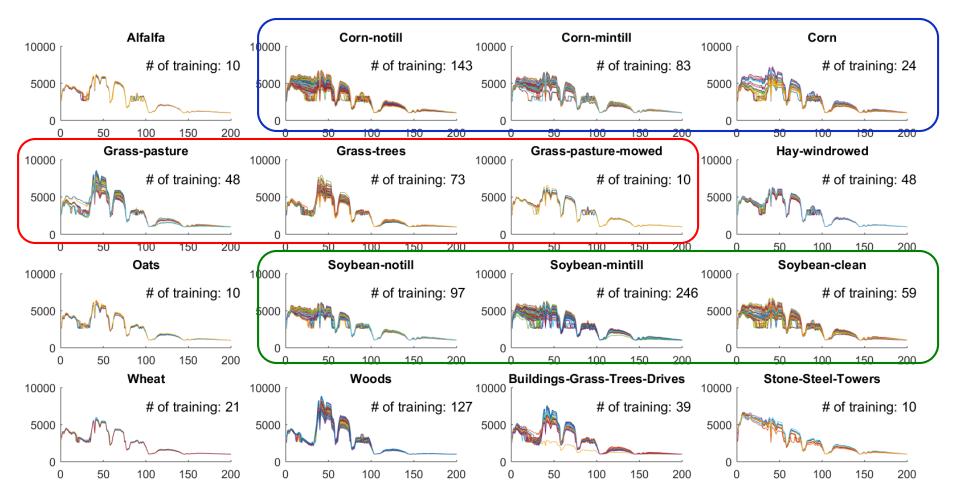


OundSinoodhS&M-Methshold (SaT) Approach



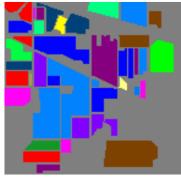
Indian Pines Data Set

□ Data size: 145×145 (spatial) × 200 (spectral) □ Close spectrum between classes



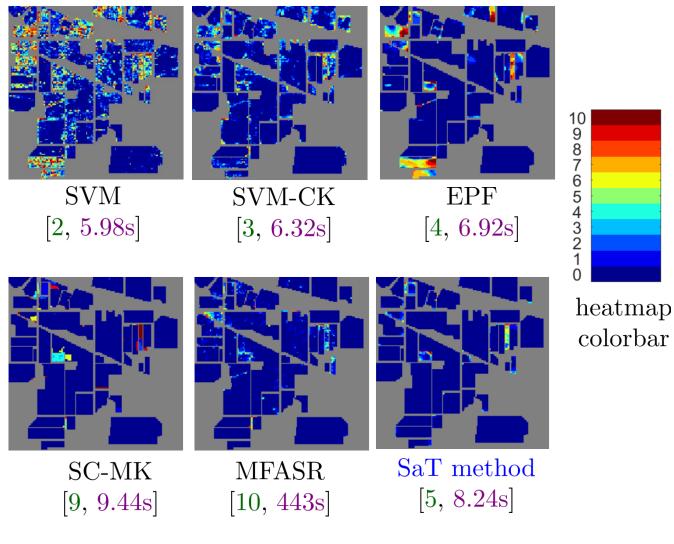
Indian Pines Data Set

Error heat map over 10 trials with random 10% training pixels



ground-truth

Background Alfalfa Corn-no till Corn-mill till Corn Grass/pasture Grass/trees Grass/pasture-mowed Hay-windrowed Oats Soybeans-no till Soybeans-mill till Sovbeans-clean Wheat Woods Bidg-Grass-Tree-Drives Stone-steel lowers label color



[no. of parameters, time in seconds]

Comparison with Other Methods

Accuracy over 10 random trials with random 10% training pixels

	SVM	SVM-CK	EPF	SC-MK	MFASR	SaT	gain
overall accuracy	79.78%	92.11%	93.34%	97.83%	97.88%	98.83%	0.95%
average accuracy	80.11%	92.68%	95.95%	98.35%	97.91%	98.88%	0.35%
kappa	76.90%	91.01%	92.36%	97.52%	97.58%	98.66%	1.08%

 \Box overall accuracy: percentage of correctly classified pixels

 \Box average accuracy: average of the accuracy in each class

 \Box kappa: Cohen's kappa coefficient

SVM [Melgani et al., 2004], SVM-CK [Camps-Valls et al., 2006],
EPF [Kang et al., 2014], SC-MK [Fang et al., 2015],
MFASR [Fang et al., 2017].

Effect of the High-order Smoothing Term

Accuracy over 10 random trials with random 10% training pixels

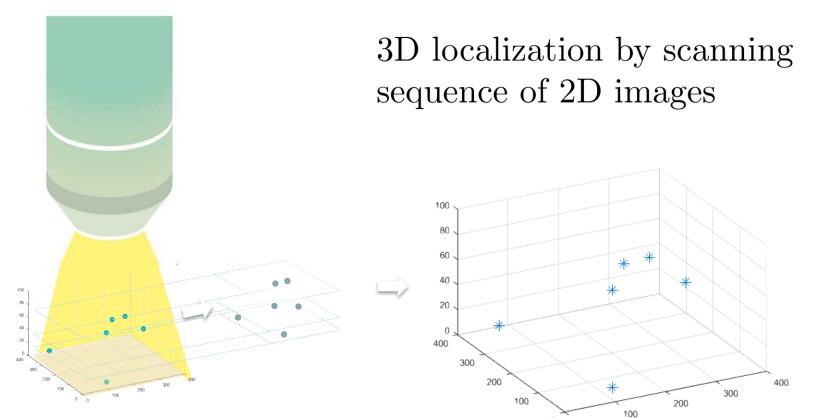
	SaT with $\ \nabla g\ ^2$	SaT without $\ \nabla g\ ^2$	gain
overall	98.83%	97.26%	1.57%
accuracy	50.0570	51.2070	1.01/0
average	98.88%	95.89%	2.99%
accuracy	50.0070	55.0570	2.0070
kappa	98.66%	96.86%	1.80%

overall accuracy: percentage of correctly classified pixels
 average accuracy: average of the accuracy in each class
 kappa: Cohen's kappa coefficient

C., Kan, Nikolova, and Plemmons, arXiv 1806.00836.

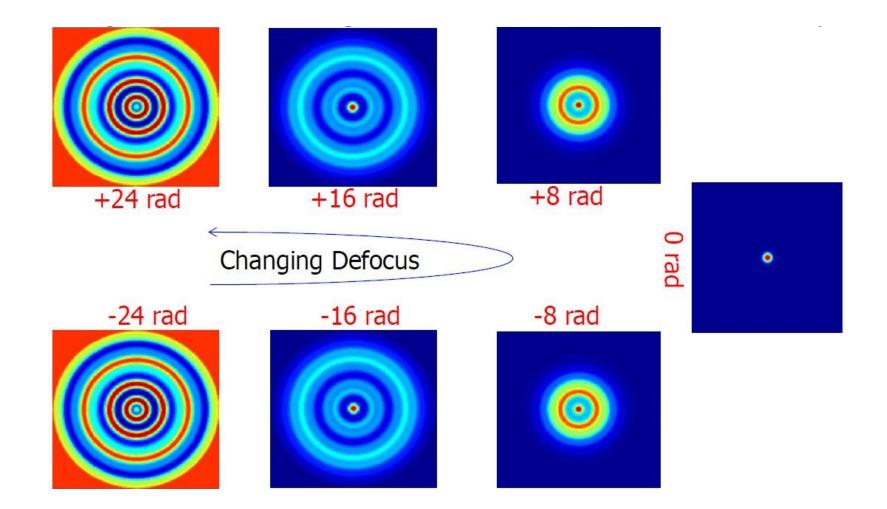
- 1. Impulse Noise Removal
- 2. SaT Segmentation Method
- 3. Hyperspectral Image
- 4. Rotating Point-spread Function

3D Imaging by 2D (Depth from Focus)



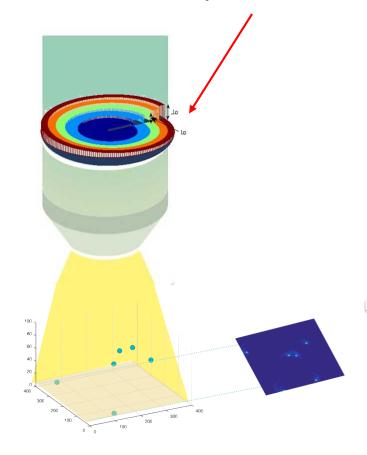
0 0

Conventional PSF for Single Point Source

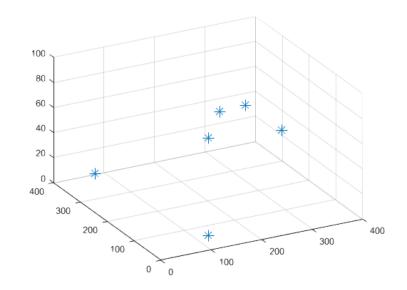


3D Imaging by 2D (Depth from De-focus)

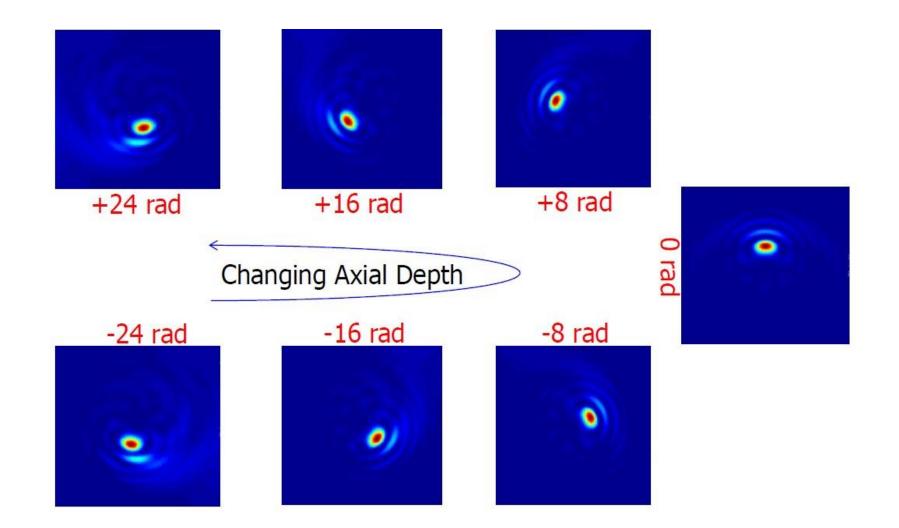
3D localization by rPSF



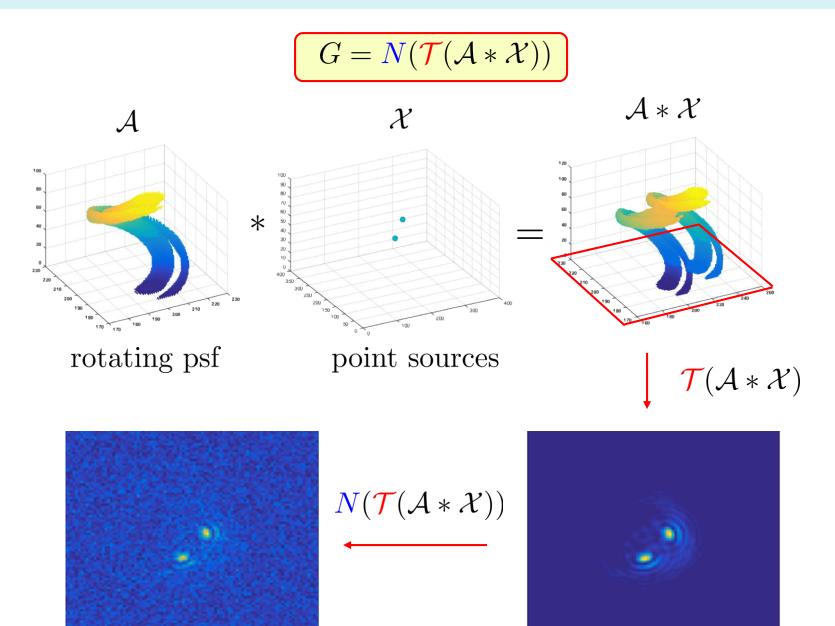
Engineer PSF to obtain 3D info from one 2D snapshot



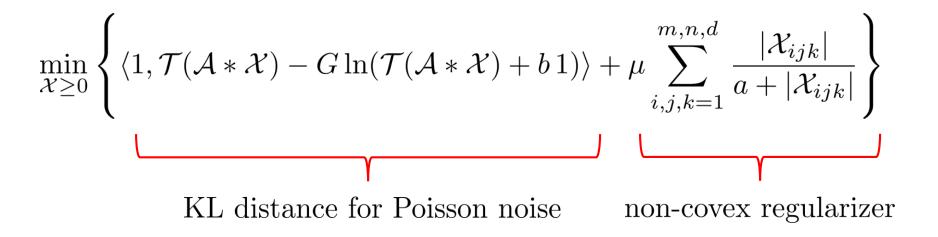
Single Lobe Rotating PSF



Forward Model for Rotating PSF



Kullback-Leibler + Nonconvex Model

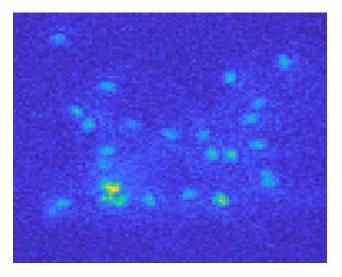


 \Box solve by iterative reweighted ℓ_1 algorithm

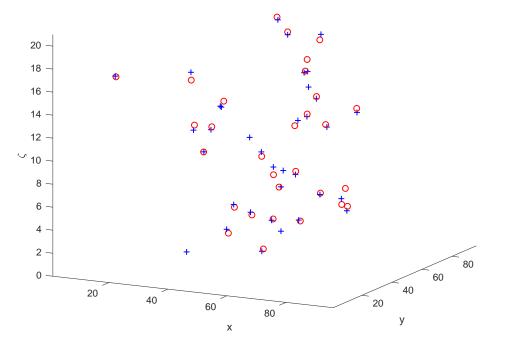
 \square substitute $\mathcal{U}_0 = \mathcal{A} * \mathcal{X}, \mathcal{U}_1 = \mathcal{X}$ and solve by ADMM

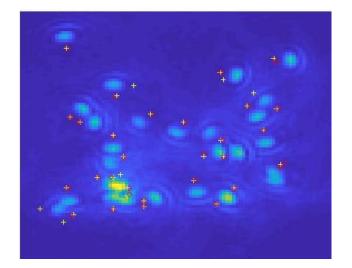
 \Box close-form solution for subproblem related to KL distance

Numerical Result



Observed Image





Estimated location in 2D

"o": ground truth "+": estimated location

Recall and Precision Accuracies

	ℓ_2 - ℓ_1		ℓ_2 -NC		KL- ℓ_1		KL-NC	
Points	Recall	Prec.	Recall	Prec.	Recall	Prec.	Recall	Prec.
5	100.00	68.91	97.60	89.15	98.93	58.64	100.00	97.52
10	99.60	55.95	94.80	83.51	99.40	65.24	99.40	93.69
15	98.67	56.28	92.80	84.77	98.93	58.64	98.40	88.60
20	97.70	56.50	95.20	80.92	98.10	57.82	97.70	87.49
30	96.00	55.74	93.93	77.77	94.00	56.22	96.20	79.75
40	93.80	52.68	95.40	59.34	93.70	54.29	95.00	73.35

□ Recall rate: Number of identified true positive emitters Number of all true emitters

 $\Box \text{ Precision rate: } \frac{\text{Number of identified true positive emitters}}{\text{Number of all emitters identified by algorithm}}$

Wang, C., Nikolova, Plemmons, and Prasad, arXiv 1804.04000.

Thank You Mila!

Thank You Mila!

We forever miss you!