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Abstract. We consider signal and image restoration using convex cost-functions composed of a non-smooth data-
fidelity term and a smooth regularization term. We provide a convergent method to minimize such cost-functions.
In order to restore data corrupted with outliers and impulsive noise, we focus on cost-functions composed of an ℓ1

data-fidelity term and an edge-preserving regularization term. The analysis of the minimizers of these cost-functions
provides a natural justification of the method. It is shown that, because of the ℓ1 data-fidelity, these minimizers
involve an implicit detection of outliers. Uncorrupted (regular) data entries are fitted exactly while outliers are
replaced by estimates determined by the regularization term, independently of the exact value of the outliers. The
resultant method is accurate and stable, as demonstrated by the experiments. A crucial advantage over alternative
filtering methods is the possibility to convey adequate priors about the restored signals and images, such as the
presence of edges. Our variational method furnishes a new framework for the processing of data corrupted with
outliers and different kinds of impulse noise.

Keywords: image denoising, impulse noise removal, non-smooth analysis, non-smooth optimization, outliers,
restoration, regularization, signal denoising, total variation, variational methods

1. Introduction

We consider the problem where, given data y ∈ IRq ,
the estimate x̂ ∈ IRp of an image or signal is defined as
the minimizer of a convex cost-function Fy : IRp → IR
which combines a data-fidelity term "y and a regular-
ization term Q, weighted by a parameter β > 0:

Fy(x) = "y(x) + βQ(x), where

"y(x) =
q∑

i=1

ψi
(
aT

i x −yi
)
. (1)

Such cost-functions are classical in regularization and
Bayesian estimation [5, 12, 19, 28, 29]. If x∗ is the orig-
inal (unknown) image or signal, every yi can be seen
as a possibly noisy version of aT

i x∗, where ai ∈ IRp

and T stands for transpose. Via the choice of {ψi }, the
term "y encourages x̂ to be such that each aT

i x̂ is close
to yi , while Q pushes x̂ to exhibit some a priori ex-
pected features. The trade-off between these two goals
is controlled by β. Since [5, 15], a useful class of reg-

ularization functions are

Q(x) =
r∑

i=1

ϕ
(
gT

i x
)
, (2)

where gi ∈ IRp, for i = 1, . . . , r , are difference opera-
tors and ϕ : IR → IR is called a potential function. It is
frequently required that x̂ contains smoothly varying
regions and edges. The possibility that convex func-
tions ϕ give rise to minimizers x̂ involving large differ-
ences |gT

i x̂ | at the locations of edges has been studied
in [6, 7, 10, 22]. Examples of smooth and convex edge-
preserving potential functions are

ϕ(t) = |t |α, 1 < α ≤ 2, (3)

ϕ(t) =
√

α + t2, (4)

ϕ(t) = 1 + |t |/α −log (1 + |t |/α), (5)

ϕ(t) = log(cosh (t/α)), (6)

where α > 0 is a parameter.

(647 citations!)
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Nonsmooth Data-Fidelity Models

Consider the variational model

F(u, z) = Ψ(u, z) + αΦ(u).

• Ψ(u, z) =
∑q
i=1 ψi(aTi u− zi) is a data-fidelity term, where A ∈ Rq×p shows the

forward system whose rows are aTi for i = 1, · · · , q and ψ is even, convex,
nonsmooth and increasing on R+.

• Φ(u) =
∑r
i=1 φ(‖Giu‖) is a regularization term, where Gi are linear operators

and φ is smooth on R \ {0}, and increasing on R+.

• α > 0 is the regularization parameter.

• The expected solution u minimises the regularized cost function F .
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Nonsmooth Data-Fidelity Models

Theorem. For J ⊂ {1, · · · , q}, let {ai, i ∈ J} be linearly independent. Set

KJ = {w ∈ Rp : aT
i w = 0,∀i ∈ J}.

Let û be such that F has a strict local minimum over û+KJ ∪K⊥
J . Then

there is an open subset OJ ⊂ Rq and a continuous function U : OJ → Rp

such that for any z ∈ OJ , F has a strict (local) minimum at û := U(z)
satisfying

aT
i û = zi, ∀i ∈ J,
aT

i û 6= zi, ∀i ∈ Jc.

Crucial consequence:

P (aT
i Û − Z = 0) = P (Z ∈ Oj) > 0.

[Ref.] Nikolova 2002; Nikolova 2004.
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Impulse Noise

zi =
{
ūi, with probability 1− r,
ni, with probability r,

• ū ∈ Rq denotes the clean image

• z ∈ Rq is the degraded image corrupted by impulse noise

• r represents the corruption rate by impulse noise

• Only part of pixels are corrupted

• Noise is independent of the image
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Two Main Type

• Salt-and-pepper noise:

zi =

 ūi, with probability 1− r,
nmax, with probability r

2 ,
nmin, with probability r

2 ,

where nmax and nmin are the maximum and minimum of the gray-level range.

• Random-valued impulse noise:

zi =
{
ūi, with probability 1− r,
ni, with probability r,

where n comes from a uniformly distributed random variable with values in
[nmin, nmax].
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L1-Data-Fidelity Model to Remove Impulse Noise

F1
z (u) =

q∑
i=1
|ui − zi|+ β

q∑
i=1

∑
j∈Ni

φ(|ui − uj |)

where Ni is the neighborhood of the pixel i.

Corollary Let φ be convex. Then, the function F1
z reaches its minimizer at

û if, and only if

i ∈ J =⇒

∣∣∣∣∣∣
∑

j∈Ni

φ′(zi − ûj)

∣∣∣∣∣∣ ≤ 1
β

i ∈ Jc =⇒
∑

j∈Ni

φ′(ûi − ûj) = σi

β
, σi = sign

∑
j∈Ni

φ′(zi − ûj)


where J = {i : ûi = zi}.
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Two-Phase Methods

• Noise Detection. Identify image pixels contaminated by noise by suitable noise
detector. The possible noise candidate set is I, and the noise-free candidate set
is U = A \ I

• Noise Removal. Based upon the information on the location of noise-free
pixels, images are denoised by solving the variational model

F1
z |I(u) =

∑
i∈I

|ui − zi|+ β
∑
j∈Ni

φ(|ui − uj |)



[Ref.] Chan, Ho, Nikolova 2005; Chan, Hu, Nikolova 2004; Cai, Chan,
Nikolova 2008; Cai, Chan, Nikolova 2010.
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Noise Detector

• Salt-and-Pepper Noise. The adaptive median filter

• Random-Valued Impulse Noise. The adaptive center-weighted median
(ACWM) filter

• The usage of noise detector is due to the fact that some part of the pixels in
images corrupted by impulse noise and the rest are noise-free

• The capability of the two-phase method is mainly limited by the accuracy of the
noise detector in the first phase.
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More Two-Phase Methods

• Noise Detection. The statistic “Rank-Ordered Logarithmic Difference” was
proposed to detect random-valued impulse noise, especially for high noise level.
It is defined as

ROLDm(zi) =
m∑
k=1

Rk(zi)

where Rk denotes the kthe smallest value in {Dj : j ∈ Ni} with
Dj(zi) = 1 + max{log2 |zj − zi|,−5}/5. The possible noise candidate set is I,
and the noise-free candidate set is U = A \ I

• Image Restoration. Based upon the information on the location of noise-free
pixels, images are deblurred and denoised simultaneously by solving the
variational model

F2
z (u) =

∑
i∈U
|aTi u− zi|+ β

∑
i∈A

∑
j∈Ni

φ(|ui − uj |)

[Ref.] Chan, Dong, Xu 2007; Chan, Dong, Hintermüller 2010.
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Example

Original image 70% SP Noise Restored result

60% RV Noise Restored result

11 DTU Compute A Tale That Begins with L1-Data-Fidelity Models 15 Oct. 2018



Cauchy Noise

• Cauchy noise often arises in echo of radar, low-frequency atmospheric noises and
underwater acoustic signals

• Cauchy noise is additive, bell-shaped, and very impulsive

• Cauchy distribution has probability density function:

pγ(x) = γ

π((x− µ)2 + γ2) ,

where µ is the location parameter, and γ > 0 is the scale parameter
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Variational Model

According to Bayes’ Law and using the maximum a posteriori (MAP)
estimator, we obtain a variational model for Cauchy noise removal

min
u∈BV (Ω)

λ

2

∫
Ω

log
(
γ2 + (Ku− f)2

)
dx+

∫
Ω
|Du|.

• BV (Ω) denotes the space of functions of bounded variation, i.e.,
BV (Ω) = {u ∈ L1(Ω) :

∫
Ω |Du| < +∞}

• ∫Ω |Du| = sup
{ ∫

Ω u div~vdx : ~v ∈ (C∞0 (Ω))2, ‖~v‖∞ ≤ 1
}

• λ > 0 is the regularization parameter

• The model is NON-CONVEX

[Ref.] Sciacchitano, Dong, Zeng 2015; Mei, Dong, Huang, Yin 2018; Laus,
Pierre, Steidl 2018.
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Properties for Nonconvex Model

min
u∈BV (Ω)

λ

2

∫
Ω

log
(
γ2 + (Ku− f)2

)
dx+

∫
Ω
|Du|

• (Existence) Assume f ∈ L2(Ω), K ∈ L(L1(Ω), L2(Ω)), and K1 6= 0; then the
model has at least one solution in BV (Ω). In the denoising case with
f ∈ L∞(Ω), the solutions satisfy infΩ f ≤ u ≤ supΩ f .

• (Uniqueness) Assume that f ∈ L2(Ω) and K is injective. Then, the model has
a unique solution u∗ in
ΩU := {u ∈ BV (Ω) : f(x)− γ < (Ku)(x) < f(x) + γ for all x ∈ Ω}.

• (Minimum-maximum principle) Let f1, f2 ∈ L∞(Ω) and γ ≥ 1 with
a1 = infΩ f1, a2 = infΩ f2 and b2 = supΩ f2. Assume that f1 < f2. Then,
denoting with u1 (resp., u2) a solution of the denoising problem for f = f1
(resp., f = f2), we have u1 ≤ u2, if (b2 − a1)(b2 − a2) < 1.
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Convex Variational Model

min
u∈BV (Ω)

λ

2

(∫
Ω

log
(
γ2 + (Ku− f)2

)
dx+ µ‖Ku− u0‖22

)
+
∫

Ω
|Du|

• λ > 0 and µ > 0 are regularization parameters.

• u0 is the median filter result.

• If 8µγ2 ≥ 1 and K is injective, the model is strictly convex.

• (Existence & Uniqueness) Assume f ∈ L2(Ω), K ∈ L(L2(Ω)), and K1 6= 0;
then the model admits a solution. If 8µγ2 ≥ 1 and K is injective, then the
solution is unique.

• In the denoising case with f ∈ L∞(Ω) and 8µγ2 ≥ 1, the unique solutions satisfy

min{inf
Ω
f, inf

Ω
u0} ≤ u ≤ max{sup

Ω
f, sup

Ω
u0}.
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Example

(PSNR=25.68 dB) (PSNR=26.69 dB)

Noisy images
(PSNR=26.74 dB)

Convex model
(PSNR=27.14 dB)
Nonconvex model
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Thank you!
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