

A Tale That Begins with L¹-Data-Fidelity Models

Yiqiu Dong

DTU Compute, Technical University of Denmark

Scientific Day in Memory of Prof. Mila Nikolova

DTU Compute

Department of Applied Mathematics and Computer Science

• When did I first hear about Mila?

When did I first hear about Mila?

A Variational Approach to Remove Outliers and Impulse Noise

MILA NIKOLOVA

CMLA UMR 8536–ENS de Cachan, 61 av. du President Wilson, 94235 Cachan Cedex, France nikolova@cmla.ens-cachan.fr

(647 citations!)

- When did I first hear about Mila?
- When did I meet Mila the first time?

- When did I first hear about Mila?
- When did I meet Mila the first time?

Hong Kong Baptist University

DEPARTMENT OF MATHEMATICS

• Tuesday, 6th March, 2007

Title: CMIV Lecture Series: Optimization for Image Processing (Lecture 3)

Speaker: Prof. Mila Nikolova, CMLA ENS de Cachan, France

Time/Place: 14:30 - 16:30 FSC 1217

A Tale That Begins with L¹-Data-Fidelity Models 15 Oct. 2018

- When did I first hear about Mila?
- When did I meet Mila the first time?
- Inspired by Mila's work on nonsmooth data-fidelity models, I finished my PhD project on "impulse noise removal in image processing".

Nonsmooth Data-Fidelity Models

Consider the variational model

$$\mathcal{F}(u,z) = \Psi(u,z) + \alpha \Phi(u).$$

- $\Psi(u,z)=\sum_{i=1}^q \psi_i(a_i^Tu-z_i)$ is a data-fidelity term, where $A\in\mathbb{R}^{q\times p}$ shows the forward system whose rows are a_i^T for $i=1,\cdots,q$ and ψ is even, convex, nonsmooth and increasing on \mathbb{R}_+ .
- $\Phi(u) = \sum_{i=1}^r \phi(\|G_i u\|)$ is a regularization term, where G_i are linear operators and ϕ is smooth on $\mathbb{R} \setminus \{0\}$, and increasing on \mathbb{R}_+ .
- \bullet $\alpha > 0$ is the regularization parameter.
- ullet The expected solution u minimises the regularized cost function ${\mathcal F}.$

Nonsmooth Data-Fidelity Models

Theorem. For $J \subset \{1, \dots, q\}$, let $\{a_i, i \in J\}$ be linearly independent. Set

$$K_J = \{ w \in \mathbb{R}^p : a_i^T w = 0, \forall i \in J \}.$$

Let \hat{u} be such that \mathcal{F} has a strict local minimum over $\hat{u} + K_J \cup K_J^{\perp}$. Then there is an open subset $O_J \subset \mathbb{R}^q$ and a continuous function $\mathcal{U}: O_J \to \mathbb{R}^p$ such that for any $z \in O_J$, \mathcal{F} has a strict (local) minimum at $\hat{u} := \mathcal{U}(z)$ satisfying

$$a_i^T \hat{u} = z_i, \quad \forall i \in J,$$

 $a_i^T \hat{u} \neq z_i, \quad \forall i \in J^c.$

Crucial consequence:

$$P(a_i^T \hat{U} - Z = 0) = P(Z \in O_j) > 0.$$

[Ref.] Nikolova 2002; Nikolova 2004.

Impulse Noise

$$z_i = \left\{ \begin{array}{ll} \bar{u}_i, & \text{with probability } 1-r, \\ n_i, & \text{with probability } r, \end{array} \right.$$

- ullet $ar{u} \in \mathbb{R}^q$ denotes the clean image
- ullet $z\in\mathbb{R}^q$ is the degraded image corrupted by impulse noise
- ullet r represents the corruption rate by impulse noise
- Only part of pixels are corrupted
- Noise is independent of the image

Two Main Type

• Salt-and-pepper noise:

$$z_i = \left\{ \begin{array}{ll} \bar{u}_i, & \text{with probability } 1-r, \\ n_{\max}, & \text{with probability } \frac{r}{2}, \\ n_{\min}, & \text{with probability } \frac{r}{2}, \end{array} \right.$$

where $n_{\rm max}$ and $n_{\rm min}$ are the maximum and minimum of the gray-level range.

Random-valued impulse noise:

$$z_i = \left\{ \begin{array}{ll} \bar{u}_i, & \text{with probability } 1-r, \\ n_i, & \text{with probability } r, \end{array} \right.$$

where n comes from a uniformly distributed random variable with values in $[n_{\min}, n_{\max}]$.

L¹-Data-Fidelity Model to Remove Impulse Noise

$$\mathcal{F}_{z}^{1}(u) = \sum_{i=1}^{q} |u_{i} - z_{i}| + \beta \sum_{i=1}^{q} \sum_{j \in \mathcal{N}_{i}} \phi(|u_{i} - u_{j}|)$$

where \mathcal{N}_i is the neighborhood of the pixel i.

Corollary Let ϕ be convex. Then, the function \mathcal{F}_z^1 reaches its minimizer at \hat{u} if, and only if

$$\begin{split} i \in J \Longrightarrow \left| \sum_{j \in \mathcal{N}_i} \phi'(z_i - \hat{u}_j) \right| &\leq \frac{1}{\beta} \\ i \in J^c \Longrightarrow \sum_{j \in \mathcal{N}_i} \phi'(\hat{u}_i - \hat{u}_j) &= \frac{\sigma_i}{\beta}, \qquad \sigma_i = \operatorname{sign} \left(\sum_{j \in \mathcal{N}_i} \phi'(z_i - \hat{u}_j) \right) \end{split}$$

where $J = \{i : \hat{u}_i = z_i\}.$

Two-Phase Methods

- Noise Detection. Identify image pixels contaminated by noise by suitable noise detector. The possible noise candidate set is \mathcal{I} , and the noise-free candidate set is $\mathcal{U} = \mathcal{A} \setminus \mathcal{I}$
- Noise Removal. Based upon the information on the location of noise-free pixels, images are denoised by solving the variational model

$$\mathcal{F}_z^1|_{\mathcal{I}}(u) = \sum_{i \in \mathcal{I}} \left[|u_i - z_i| + \beta \sum_{j \in \mathcal{N}_i} \phi(|u_i - u_j|) \right]$$

[Ref.] Chan, Ho, Nikolova 2005; Chan, Hu, Nikolova 2004; Cai, Chan, Nikolova 2008; Cai, Chan, Nikolova 2010.

Noise Detector

- Salt-and-Pepper Noise. The adaptive median filter
- Random-Valued Impulse Noise. The adaptive center-weighted median (ACWM) filter
- The usage of noise detector is due to the fact that some part of the pixels in images corrupted by impulse noise and the rest are noise-free
- The capability of the two-phase method is mainly limited by the accuracy of the noise detector in the first phase.

More Two-Phase Methods

 Noise Detection. The statistic "Rank-Ordered Logarithmic Difference" was proposed to detect random-valued impulse noise, especially for high noise level. It is defined as

$$ROLD_m(z_i) = \sum_{k=1}^{m} R_k(z_i)$$

where R_k denotes the kthe smallest value in $\{D_i : j \in \mathcal{N}_i\}$ with $D_i(z_i) = 1 + \max\{\log_2|z_i - z_i|, -5\}/5$. The possible noise candidate set is \mathcal{I} , and the noise-free candidate set is $\mathcal{U} = \mathcal{A} \setminus \mathcal{I}$

• Image Restoration. Based upon the information on the location of noise-free pixels, images are deblurred and denoised simultaneously by solving the variational model

$$\mathcal{F}_z^2(u) = \sum_{i \in \mathcal{U}} |a_i^T u - z_i| + \beta \sum_{i \in \mathcal{A}} \sum_{j \in \mathcal{N}_i} \phi(|u_i - u_j|)$$

[Ref.] Chan, Dong, Xu 2007; Chan, Dong, Hintermüller 2010.

Example

Original image

Restored result

60% RV Noise

Restored result

Cauchy Noise

- Cauchy noise often arises in echo of radar, low-frequency atmospheric noises and underwater acoustic signals
- Cauchy noise is additive, bell-shaped, and very impulsive
- Cauchy distribution has probability density function:

$$p_{\gamma}(x) = \frac{\gamma}{\pi((x-\mu)^2 + \gamma^2)},$$

where μ is the location parameter, and $\gamma > 0$ is the scale parameter

Variational Model

According to Bayes' Law and using the maximum a posteriori (MAP) estimator, we obtain a variational model for Cauchy noise removal

$$\min_{u \in BV(\Omega)} \frac{\lambda}{2} \int_{\Omega} \log \left(\gamma^2 + (Ku - f)^2 \right) \ dx + \int_{\Omega} |Du|.$$

- $BV(\Omega)$ denotes the space of functions of bounded variation, i.e., $BV(\Omega) = \{u \in L^1(\Omega): \int_{\Omega} |Du| < +\infty\}$
- $\int_{\Omega} |Du| = \sup \left\{ \int_{\Omega} u \operatorname{div} \vec{v} dx : \vec{v} \in (C_0^{\infty}(\Omega))^2, \|\vec{v}\|_{\infty} \le 1 \right\}$
- $\lambda > 0$ is the regularization parameter
- The model is NON-CONVEX

[Ref.] Sciacchitano, Dong, Zeng 2015; Mei, Dong, Huang, Yin 2018; Laus, Pierre, Steidl 2018.

Properties for Nonconvex Model

$$\min_{u \in BV(\Omega)} \frac{\lambda}{2} \int_{\Omega} \log \left(\gamma^2 + (Ku - f)^2 \right) dx + \int_{\Omega} |Du|$$

- (Existence) Assume $f \in L^2(\Omega)$, $K \in \mathcal{L}(L^1(\Omega), L^2(\Omega))$, and $K\mathbf{1} \neq 0$; then the model has at least one solution in $BV(\Omega)$. In the denoising case with $f \in L^\infty(\Omega)$, the solutions satisfy $\inf_\Omega f \leq u \leq \sup_\Omega f$.
- (Uniqueness) Assume that $f \in L^2(\Omega)$ and K is injective. Then, the model has a unique solution u^* in $\Omega_U := \{u \in BV(\Omega) : f(x) \gamma < (Ku)(x) < f(x) + \gamma \text{ for all } x \in \Omega\}.$
- (Minimum-maximum principle) Let $f_1, f_2 \in L^\infty(\Omega)$ and $\gamma \geq 1$ with $a_1 = \inf_\Omega f_1$, $a_2 = \inf_\Omega f_2$ and $b_2 = \sup_\Omega f_2$. Assume that $f_1 < f_2$. Then, denoting with u_1 (resp., u_2) a solution of the denoising problem for $f = f_1$ (resp., $f = f_2$), we have $u_1 \leq u_2$, if $(b_2 a_1)(b_2 a_2) < 1$.

Convex Variational Model

$$\min_{u \in BV(\Omega)} \frac{\lambda}{2} \left(\int_{\Omega} \log \left(\gamma^2 + (Ku - f)^2 \right) dx + \mu ||Ku - u_0||_2^2 \right) + \int_{\Omega} |Du|$$

- $\lambda > 0$ and $\mu > 0$ are regularization parameters.
- u_0 is the median filter result.
- If $8\mu\gamma^2 \ge 1$ and K is injective, the model is strictly convex.
- (Existence & Uniqueness) Assume $f \in L^2(\Omega)$, $K \in \mathcal{L}(L^2(\Omega))$, and $K1 \neq 0$; then the model admits a solution. If $8\mu\gamma^2 \geq 1$ and K is injective, then the solution is unique.
- In the denoising case with $f \in L^{\infty}(\Omega)$ and $8\mu\gamma^2 \geq 1$, the unique solutions satisfy

$$\min\{\inf_{\Omega} f, \inf_{\Omega} u_0\} \le u \le \max\{\sup_{\Omega} f, \sup_{\Omega} u_0\}.$$

Example

Thank you!