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Tensor Decomposition

CANDECOMP/PARAFAC Decomposition:

X =
r∑

i=1

λia
i ,1 ⊗ · · · ⊗ ai ,m

The minimal value of r is called the rank of A.



Tensor Decomposition

Tucker Decomposition:

X = G × A1 × A2 · · · × Am

X =

r1∑
i1=1

· · ·
rm∑

im=1

gi1,i2,··· ,ima
i1,1 ⊗ · · · ⊗ aim,m

It can be obtained by using singular value decomposition to each
unfolded matrix Xij from X . The Tucker rank is
(rank(X1), rank(X2), · · · , rank(Xm)) = (r1, r2, · · · , rm).



Low-dimensional Structure

Data in many real applications exhibit low-dimensional structures
due to local regularities, global symmetries, repetitive patterns,
redundant sampling, ... (low-dimensional structure → low-rank
data matrices)



Example

Customer/Item I II III IV · · ·
A 5 1 ? ? · · ·
B ? 2 3 ? · · ·
C ? ? 4 2 · · ·
D 1 ? ? ? · · ·
...

...
...

...
... · · ·

For example (Netflix Challenge 2009), it is about 0.5 million users
and about 18,000 movies

Matrix Completion

min
X

rank(X) subject to PΩ(X) = PΩ(M)



Example

Matrix RPCA

min
X

rank(X) + λ‖E‖0 subject to X + E = M



Example

Robust Matrix Completion

min
X

rank(X) + λ‖E‖0 subject to PΩ(X + E) = PΩ(M)



Low Rank Matrix Recovery

I Matrix Completion

min
X

rank(X) subject to PΩ(X) = PΩ(M)

I Matrix RPCA

min
X

rank(X) + λ‖E‖0 subject to M = X + E

I Robust Matrix Completion

min
X

rank(X) + λ‖E‖0 subject to PΩ(M) = PΩ(X + E)



Low Rank Matrix Recovery

I Matrix Completion

min
X
‖X‖∗ subject to PΩ(X) = PΩ(M)

I Matrix RPCA

min
X
‖X‖∗ + λ‖E‖1 subject to M = X + E

I Robust Matrix Completion

min
X
‖X‖∗ + λ‖E‖1 subject to PΩ(M) = PΩ(X + E)

Nuclear norm ‖ · ‖∗: sum of singular values (convex envelop of
rank)



Low Rank Matrix Recovery Results

I (RPCA) Candes, E. J., Li, X., Ma, Y., and Wright, J. Journal
of the ACM, 58(3):173, 2011.

I (Matrix Completion) Recht, B. Journal of Machine Learning
Research, 12(4):34133430, 2011.

I (Matrix Completion) Chen, Y. IEEE Transactions on
Information Theory, 61(5):29092923, 2013.



Low Rank Tensor Recovery

Data are usually in multi-dimensional array.

“Vectorization” probably break the inherent structures and
correlations in the original data.



Low Rank Tensor Recovery

I Tensor Completion

min
X

rank(X ) subject to PΩ(X ) = PΩ(M)

I Tensor Robust PCA

min
X

rank(X ) + λ‖E‖0 subject to M = X + E

I Robust Tensor Completion

min
X

rank(X ) + λ‖E‖0 subject to PΩ(M) = PΩ(X + E)



Low Rank Tensor Recovery

I CP decomposition/rank cannot be computed efficiently

I Matrix rank can be replaced by matrix nuclear norm (the sum
of singular values), it is a convex envelope

I Replace Tucker rank by the sum of nuclear norms of unfolding
tensors, interdependent matrix trace norm is involved

I The use of the sum of nuclear norms of unfolding matrices of
a tensor may be challenged since it is suboptimal1

I The tensor trace norm (the average of trace norms of
unfolding matrices) is not a tight convex relaxation of the
tensor rank (the average rank of unfolding matrices) 2

1C. Mu, B. Huang, J. Wright, and D. Goldfarb. Square deal: Lower bounds
and improved relaxations for tensor recovery. In ICML, pages 7381, 2014.

2B. Romera-Paredes and M. Pontil. A new convex relaxation for tensor
completion. In Adv. Neural Inf. Process. Syst., pages 29672975, 2013.



t-SVD Decomposition

A third-order tensor of size n1 × n2 × n3 can be viewed as an
n1 × n2 matrix of tubes which lie in the third-dimension. [Kilmer,
M. E. and Martin, C. D. Linear Algebra & Its Applications,
435(3):641658, 2011]



t-SVD Decomposition

Definition: The t-product A ∗ B of A ∈ Rn1×n2×n3 and
B ∈ Rn2×n4×n3 is a tensor C ∈ Rn1×n4×n3 whose (i , j)th tube is
given by

C(i , j , :) =

n2∑
k=1

A(i , k, :) ∗ B(k , j , :),

where ∗ denotes the circular convolution between two tubes of
same size.

The tube at (i , k) position in A convolutes with the tube at (k , j)
position in B. Both have sizes n3. Put all the correlations at (i , j)
position in C.

The multiplication of between the scalars is replaced by circular
convolution between the tubes.



t-SVD Decomposition

Definition: The identity tensor I ∈ Rn×n×n3 is defined to be a
tensor whose first frontal slice I(1) is the n × n identity matrix and
whose other frontal slices I(i), i = 2, . . . , n3 are zero matrices.

Definition: The conjugate transpose of a tensor A ∈ Rn1×n2×n3 is
the tensor AH ∈ Rn2×n1×n3 obtained by conjugate transposing
each of the frontal slice and then reversing the order of transposed
frontal slices 2 through n3, i.e.,(

AH
)(1)

=
(
A(1)

)H
,(

AH
)(i)

=
(
A(n3+2−i)

)H
, i = 2, . . . , n3.



t-SVD Decomposition

Definition: A tensor Q ∈ Rn×n×n3 is orthogonal if it satisfies

QH ∗ Q = Q ∗ QH = I,

where I is the identity tensor of size n × n × n3.

Definition: A tensor A is called f-diagonal if each frontal slice A(i)

is a diagonal matrix.



t-SVD Decomposition

For A ∈ Rn1×n2×n3 , the t-SVD of A is given by

A = U ∗ S ∗ VH ,

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors,
and S ∈ Rn1×n2×n3 is a f-diagonal tensor, respectively. The entries
in S are called the singular tubes of A.



t-SVD Decomposition

The tensor tubal-rank, denoted as rankt(A), is defined as the
number of nonzero singular tubes of S, where S comes from the
t-SVD of A, i.e.,

rankt(A) = #{i : S(i , i , :) 6= ~0}.

It can be shown that it is equal to maxi rank(Â(i)) where Â(i) is
the i-th slice of Â and Â represents a third-order tensor obtained
by taking the Discrete Fourier Transform (DFT) of all the tubes
along the third dimension of A.

Definition: The tubal nuclear norm of a tensor A ∈ Rn1×n2×n3 ,
denoted as ‖A‖TNN, is the nuclear norm of all the frontal slices of
Â.



Low Tubal Rank Tensor Recovery

I Tensor Completion

min
X

rank(X ) subject to PΩ(X ) = PΩ(M)

I Tensor Robust PCA

min
X

rank(X ) + λ‖E‖0 subject to M = X + E

I Robust Tensor Completion

min
X

rank(X ) + λ‖E‖0 subject to PΩ(M) = PΩ(X + E)



Low Tubal Rank Tensor Recovery (Relaxation)

I Tensor Completion

min
X
‖X‖TNN subject to PΩ(X ) = PΩ(M)

I Tensor Robust PCA

min
X
‖X‖TNN + λ‖E‖1 subject to M = X + E

I Robust Tensor Completion

min
X
‖X‖TNN + λ‖E‖1 subject to PΩ(M) = PΩ(X + E)

Can we recover low-tubal-rank tensor from partial and grossly
corrupted observations exactly ?



Tensor Incoherence Conditions

Assume that rankt(L0) = r and its t-SVD L0 = U ∗ S ∗ VH . L0 is
said to satisfy the tensor incoherence conditions with parameter
µ > 0 if

max
i=1,··· ,n1

‖UH ∗ ~ei‖F ≤
√
µr

n1
,

max
j=1,··· ,n2

‖VH ∗ e̊ j‖F ≤
√
µr

n2
,

and (joint incoherence condition)

‖U ∗ VH‖∞ ≤
√

µr

n1n2n3
.



Tensor Incoherence Conditions

The column basis, denoted as ~ei , is a tensor of size n1 × 1× n3

with its (i , 1, 1)th entry equaling to 1 and the rest equaling to 0.
The tube basis, denoted as e̊k , is a tensor of size 1× 1× n3 with
its (1, 1, k)th entry equaling to 1 and the rest equaling to 0.



Low Rank Tensor Recovery

Theorem
Suppose L0 ∈ Rn1×n2×n3 obeys tensor incoherence conditions, and
the observation set Ω is uniformly distributed among all sets of
cardinality m = ρn1n2n3. Also suppose that each observed entry is
independently corrupted with probability γ. Then, there exist
universal constants c1, c2 > 0 such that with probability at least
1− c1(n(1)n3)−c2 , the recovery of L0 with λ = 1/

√
ρn(1)n3 is

exact, provided that

r ≤
crn(2)

µ(log(n(1)n3))2
and γ ≤ cγ

where cr and cγ are two positive constants.

n(1) = max{n1, n2} and n(2) = min{n1, n2}



Low Rank Tensor Recovery

Theorem
(Tensor Completion): Suppose L0 ∈ Rn1×n2×n3 obeys tensor
incoherence conditions, and m entries of L0 are observed with
locations sampled uniformly at random, then there exist universal
constants c0, c1, c2 > 0 such that if

m ≥ c0µrn(1)n3(log(n(1)n3))2,

L0 is the unique minimizer to the convex optimization problem
with probability at east 1− c1(n(1)n3)−c2 .



Low Rank Tensor Recovery

The detailed theoretical and numerical results can be found in
https://arxiv.org/abs/1708.00601



Transform-based t-SVD

The first work is given by E. Kernfeld, M. Kilmer and S. Aeron,
Tensor tensor products with invertible linear transforms, LAA, Vol
485, pp. 545-570 (2015).

We generalize tensor singular value decomposition by using other
unitary transform matrices instead of discrete Fourier/cosine
transform matrix.

The motivation is that a lower transformed tubal tensor rank may
be obtained by using other unitary transform matrices than that by
using discrete Fourier/cosine transform matrix, and therefore this
would be more effective for robust tensor completion.



Transform-based t-SVD

The detailed theoretical and numerical results can be found in
http://www.math.hkbu.edu.hk/∼mng/RTC.pdf



Summary

I More and more applications involving tensor data

I Theory and Algorithms to be studied


