Scientific Day in Memory of Prof. Mila Nikolova

15 October 2018



Table of Contents

International Conference on Image Processing — ICIP’99

GENERAL CHAIR’S INVITATION
TECHNICAL PROGRAM OVERVIEW -
ICIP’99 ORGANIZING COMMITTEE
TECHNICAL PROGRAM COMMITTEE --
ICIP2000 Call for Papers
AUTHOR INDEX  c+veeretseeresseieatomsasseiasmstesisistesasssstassssss sasesssssass sarssassssessassssnsnssssesses

Volume 2 — TUESDAY, OCTOBER 26 sessions

26AS1: STOCHASTIC GEOMETRIC APPROACH TO IMAGE ANALYSIS
Organizer: Prof. Alfred O. Hero 111, Univ. of Michigan
Prof. Hamid Krim, North Carolina State University

BINARY AND TERNARY FLOWS FOR IMAGE SEGMENTATION  rrrirerecesseesrnescnncanisnanns 1
Anthony YezziJr., Andy Tsai, Alan Willsky

THE SHAPE OF ILLUSORY FIGURES -
Davi Geiger, Krishnan Kumaran, Hsing-Kuo Pro, Nava Rubm

LOCALLY HOMOGENEOUS IMAGES AS MINIMIZERS OF OBJECTIVE FUNCTIONS «-:-+---+- 11
Mila Nikolova







Seminar

Image Restoration by Minimizing Cost-Functions
with Non-smooth Data-Fidelity Terms and
Application to the Processing of Outliers

Professor Mila Nikolova
ENST, France

on January 18, 2002 (Friday),
4:00 - 5:00pm

Room 517, Meng Wah Complex

All are welcome
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Dr. Pierre Komprobst
INRIA, Odyssee Lab, France

About some variational problem in fmage processing

Dr. Sia Pang Y ung
Department of Mathematics, The University of Hong Kong
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Caffee Break

Dr. Mila Nikolova

ENST, France

Camparison of the main_forms of half~quadratic regularization
D Michael K. Ng
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Joint France-Hong Kong
Image Processing Workshop

2 February 2007

Time: 2:00 p.m. - 6:00 p.m.
Venue: FSC1217, Fong Shu Chuen Building
Ho Sin Hang Campus
Hong Kong Baptist University
Progra

Speakers:

Francois Malgouvyres (Université Paris 13)
Michael Ng (Hong Kong Baptist University)
Mila Nikolova (CMLA ENS de Cachan)

Chong Sze Tong (Hong Kong Baptist University)
Poon Chi Yuen (Hong Kong Baptist University)

Organized by
Centre for Mathematical Imaging and Vision (CMIV), Hong Kong Baptist
University

Sponsored by

Centre for Mathematical Imaging and Vision (CMIV), Hong Kong Baptist
University

The Consulate General France in Hong Kong



+ 8 May 2007
Prof. Kin Hong Wong
Real-Time Pose Tracking and Model Reconstruction

+ January-February 2007
Prof. Francois Malgouyres
Lecture Series:
(i) Defining a Data Fidelty Term by a Polytope: Application to Image Restoration and Compression
(i) Projecting onto a Polytope Simplfies Data Distributions: Theory and Some Applications
(if) Primal-dual Implementation of the Basis Pursut Algorithm

o February-April 2007
Prof. Mia Nikolova
Lecture Series: Optimization for Image Restoration

o 7 November 2006
Prof. Ke Chen
Optimization-based Multievel Methods for Image Restoration
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In memory of Mila Nikolova



Robust Tensor Completion and its Applications
Michael K. Ng

Department of Mathematics
Hong Kong Baptist University
E-mail: mng@math.hkbu.edu.hk



Tensor Decomposition

CANDECOMP /PARAFAC Decomposition:
r . .
X:Z)\ia’7l®...®a”m
i=1

The minimal value of r is called the rank of A.



Tensor Decomposition

Tucker Decomposition:

X=GxA;1 xAr - xAp

r 'm
il iy
X = E § 8iriyyee ip@ T ® - @an

=1 im=1
It can be obtained by using singular value decomposition to each
unfolded matrix X; from X'. The Tucker rank is
(rank(X1), rank(Xz), -+ ,rank(Xm)) = (n, r2, -+ rm)-



Low-dimensional Structure

Data in many real applications exhibit low-dimensional structures
due to local regularities, global symmetries, repetitive patterns,
redundant sampling, ... (low-dimensional structure — low-rank
data matrices)



Example

Customer/Item | | | Il [ Il [ IV
A 51117 |7
B 7121317
C P71 42
D 1?27?77

For example (Netflix Challenge 2009), it is about 0.5 million users
and about 18,000 movies

Matrix Completion

m)én rank(X) subject to Pq(X) = Pq(M)



Example

Matrix RPCA
mxin rank(X) + A||[E|lp subject to X+ E=M



Example

Robust Matrix Completion

mxin rank(X) + A||[E|lo subject to Pq(X + E) = Pqo(M)



Low Rank Matrix Recovery

» Matrix Completion
mxin rank(X) subject to Pq(X) = Pq(M)
» Matrix RPCA

m)én rank(X) + A||[E[jo subject to M =X+E

» Robust Matrix Completion

m)én rank(X) + A||[E|jo  subject to Pq(M) = Pq(X + E)



Low Rank Matrix Recovery

> Matrix Completion
m)én |X][« subject to Pq(X) = Pq(M)
> Matrix RPCA
mxin IIX]|« + A||E||1 subject to M =X+E
» Robust Matrix Completion

mxin |IX|[« + A[E|]|1 subject to Pq(M) = Pqo(X + E)

Nuclear norm || - ||«: sum of singular values (convex envelop of
rank)



Low Rank Matrix Recovery Results

» (RPCA) Candes, E. J., Li, X., Ma, Y., and Wright, J. Journal
of the ACM, 58(3):173, 2011.

» (Matrix Completion) Recht, B. Journal of Machine Learning
Research, 12(4):34133430, 2011.

» (Matrix Completion) Chen, Y. IEEE Transactions on
Information Theory, 61(5):29092923, 2013.



Low Rank Tensor Recovery

Data are usually in multi-dimensional array.

Mode 1 (spatial column)
Mode 1 (spatial column)

Mode 2 (spatial row) Mode 2 (spatial row)

“Vectorization” probably break the inherent structures and
correlations in the original data.



Low Rank Tensor Recovery

» Tensor Completion
m)in rank(X') subject to Pq(X) = Pq(M)
» Tensor Robust PCA

m)in rank(X) + A||€]jo subject to M=X+E

» Robust Tensor Completion

m/r\i?n rank(X) + A||€]lo0  subject to  Pq(M) = Pq(X + &)



Low Rank Tensor Recovery

» CP decomposition/rank cannot be computed efficiently
» Matrix rank can be replaced by matrix nuclear norm (the sum
of singular values), it is a convex envelope

» Replace Tucker rank by the sum of nuclear norms of unfolding
tensors, interdependent matrix trace norm is involved

» The use of the sum of nuclear norms of unfolding matrices of
a tensor may be challenged since it is suboptimall

» The tensor trace norm (the average of trace norms of
unfolding matrices) is not a tight convex relaxation of the
tensor rank (the average rank of unfolding matrices) 2

1C. My, B. Huang, J. Wright, and D. Goldfarb. Square deal: Lower bounds
and improved relaxations for tensor recovery. In ICML, pages 7381, 2014.

2B. Romera-Paredes and M. Pontil. A new convex relaxation for tensor
completion. In Adv. Neural Inf. Process. Syst., pages 29672975, 2013.



t-SVD Decomposition

A third-order tensor of size n; X n» X n3 can be viewed as an
n1 X ny matrix of tubes which lie in the third-dimension. [Kilmer,

M. E. and Martin, C. D. Linear Algebra & Its Applications,
435(3):641658, 2011]



t-SVD Decomposition

Definition: The t-product A x B of A € R™M*™*"s and
B € Rm™*mxm is 3 tensor C € RM*™*Ms whose (/, j)th tube is
given by

(i) ZA ) Bk, j, ),

where * denotes the circular convolution between two tubes of
same size.

The tube at (/, k) position in A convolutes with the tube at (k,;)
position in B. Both have sizes n3. Put all the correlations at (i, )
position in C.

The multiplication of between the scalars is replaced by circular
convolution between the tubes.



t-SVD Decomposition

Definition: The identity tensor Z € R"*"*" is defined to be a
tensor whose first frontal slice Z(1) is the n x n identity matrix and
whose other frontal slices ZU),j = 2, ..., n3 are zero matrices.

Definition: The conjugate transpose of a tensor A € RM>*M™%M jg
the tensor A" € R™*Mxns ohtained by conjugate transposing
each of the frontal slice and then reversing the order of transposed
frontal slices 2 through ns, i.e.,

()" = (a0)",

(AH)(i) - (A<"3+2—">)H, i=2.... .



t-SVD Decomposition

Definition: A tensor @ € R"*"*M is orthogonal if it satisfies
Q"xQ0=0x0"=1,

where 7 is the identity tensor of size n X n X n3.

Definition: A tensor A is called f-diagonal if each frontal slice A()
is a diagonal matrix.



t-SVD Decomposition

For A € RM*MXn the t-SVD of A is given by
A=UxS*VH,

where U € RMXMXM and ) € RM™*MXM gre orthogonal tensors,
and § € RM*mxMm ig 3 f-diagonal tensor, respectively. The entries
in S are called the singular tubes of A.



t-SVD Decomposition

The tensor tubal-rank, denoted as rank:(.A), is defined as the
number of nonzero singular tubes of S, where S comes from the

t-SVD of A, i.e,
rank;(A) = #{i : S(i,i,:) # 0}.

It can be shown that it is equal to max; rank(A()) where A() is
the i-th slice of A and A represents a third-order tensor obtained
by taking the Discrete Fourier Transform (DFT) of all the tubes

along the third dimension of A.

Definition: The tubal nuclear norm of a tensor A € RM*M2Xn3
denoted as ||.A||Tnn, is the nuclear norm of all the frontal slices of

A.



Low Tubal Rank Tensor Recovery

» Tensor Completion
m)in rank(X') subject to Pq(X) = Pq(M)
» Tensor Robust PCA

m)in rank(X) + A||€]jo subject to M=X+E

» Robust Tensor Completion

m/r\i?n rank(X) + A||€]lo0  subject to  Pq(M) = Pq(X + &)



Low Tubal Rank Tensor Recovery (Relaxation)

» Tensor Completion
m}én |X[[Tan subject to  Pq(X) = Pq(M)
» Tensor Robust PCA
m)in X Tnn + A€l subject to M =X+ &
» Robust Tensor Completion
m)én 1 X]Tan + AllE]l1 subject to  Po(M) = Po(X + &)

Can we recover low-tubal-rank tensor from partial and grossly
corrupted observations exactly ?



Tensor Incoherence Conditions

Assume that rank:(Lo) = r and its t-SVD Lo =U * S+ V. Ly is
said to satisfy the tensor incoherence conditions with parameter
w>0if

max |U « &]|F < H,
=1, .m n
r

max [V el <, /2
:17"'7'72 n2

and (joint incoherence condition)

ur
n1n2n3'

U = Vo <



Tensor Incoherence Conditions

The column basis, denoted as &, is a tensor of size ny x 1 X n3
with its (7,1, 1)th entry equaling to 1 and the rest equaling to 0.
The tube basis, denoted as &y, is a tensor of size 1 x 1 X n3 with
its (1,1, k)th entry equaling to 1 and the rest equaling to 0.



Low Rank Tensor Recovery

Theorem

Suppose Ly € RM*mXM3 opeys tensor incoherence conditions, and
the observation set ) is uniformly distributed among all sets of
cardinality m = pninan3. Also suppose that each observed entry is
independently corrupted with probability ~v. Then, there exist
universal constants c1, cp > 0 such that with probability at least

1 — c1(n(1yn3) =2, the recovery of Lo with A\ =1/, /ph1)m3 is
exact, provided that

Cr n(2)

r<—> ——  and <c
p(log(n1yns))? T=9

where ¢, and ¢, are two positive constants.

nay = max{ny, n2} and ne) = min{ny, n2}



Low Rank Tensor Recovery

Theorem
(Tensor Completion): Suppose Ly € R™*™XM obeys tensor
incoherence conditions, and m entries of Lo are observed with
locations sampled uniformly at random, then there exist universal
constants ¢y, c1, ¢ > 0 such that if
2

m > copurn(yynz(log(n(1ynz))”,
Lo Is the unique minimizer to the convex optimization problem
with probability at east 1 — c1(n(yn3)~ .



Low Rank Tensor Recovery

The detailed theoretical and numerical results can be found in
https://arxiv.org/abs/1708.00601



Transform-based t-SVD

The first work is given by E. Kernfeld, M. Kilmer and S. Aeron,
Tensor tensor products with invertible linear transforms, LAA, Vol
485, pp. 545-570 (2015).

We generalize tensor singular value decomposition by using other
unitary transform matrices instead of discrete Fourier/cosine
transform matrix.

The motivation is that a lower transformed tubal tensor rank may
be obtained by using other unitary transform matrices than that by
using discrete Fourier/cosine transform matrix, and therefore this
would be more effective for robust tensor completion.



Transform-based t-SVD

The detailed theoretical and numerical results can be found in
http://www.math.hkbu.edu.hk/~mng/RTC.pdf



Summary

» More and more applications involving tensor data

» Theory and Algorithms to be studied



