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Scientific collaboration from 2016 to 2018:

• at Onera - The French Aerospace Lab
(2016 – 2017)

• at CMLA (DIM Math Innov postdoctoral
position) (2017 – 2018)

Submitted papers:

• Alternating structure-adapted proximal
gradient descent for nonconvex
block-regularised problems
Mila Nikolova, P. T., submitted, 2017
(HAL-01677456)

• Inertial Alternating Generalized
Forward-Backward Splitting for Image
Colorization
P.T., Fabien Pierre, Mila Nikolova,
submitted, 2018 (HAL-01792432)
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Motivation

Question: How to jointly estimate two objects x∗ and y∗, where

x∗ = arg min
x

F (x) + H(x , y∗) convex problem

y∗ = arg min
y

G (y) + H(x∗, y) convex problem

−→ Biconvex (nonconvex) optimization problem

min
x,y

J(x , y) = F (x) + G (y) + H(x , y)

Applications: joint optimization, blind source separation, blind
deconvolution, nonnegative matrix factorization, structured total least
squares, multimodal learning for image classification, etc.
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Alternating optimization

If J convex in (x , y), then block coordinate descent (BCD)-like strategy:

• alternating partial minimization

• alternating explicit/implicit gradient descent

• alternating forward-backward splitting (FBS)

−→ Such algorithms are applicable as soon as the x-problem and the
y -problem are convex, but convergence?
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Related work: PALM

Assume J(x , y) = F (x) + G (y)︸ ︷︷ ︸
nonsmooth and prox-friendly

+H(x , y)︸ ︷︷ ︸
smooth

Optimization in the x-direction

proxτ k F︸ ︷︷ ︸
implicit /

(xk − τ k ∇xH(xk , yk )︸ ︷︷ ︸
explicit gradient descent

) (same for yk )

Introduced by Xu and Yin (’13) and Bolte, Sabach and Teboulle (’14)

What if

• F or G (regularizers) are not prox-friendly?

• step-sizes (τ k , σk ) (which depend on the Lipschitz constants of
∇xH(·, yk ) and ∇yH(xk+1, ·)) are hard to estimated at each update?

The ASAP algorithm (5/17)



Introduction Convergence analysis Extensions Applications Conclusion

Proposed ASAP algorithm

If

• H has a nice structure in the sense that H is partially prox-friendly
(in x/y -direction)

• regularizers F and G are smooth (or can be replaced by smooth
approximations)

Idea: Invert the roles of the components of J in the FBS, i.e. replace

proxτ k F (xk− τ k ∇xH(xk , yk )) (PALM)

by proxτH(·,yk )(x
k − τ ∇F (xk )) (ASAP)

−→ ASAP = ‘mirror’ of PALM
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Theoretical issues

J(x , y) = F (x) + G (y) + H(x , y)

For ASAP, the coupling term H does not need to be smooth

• subdifferential vs. partial subdifferentials:

∂J(x , y) 6= ∂xJ(x , y)× ∂yJ(x , y)

• parametric closedness of the partial subdifferentials:

(xk , yk ) −→
k→+∞

(x∗, y∗)

(x̃k , ỹk ) −→
k→+∞

(x∗, y∗)

pk
x ∈ ∂xJ(xk , yk )

qk
y ∈ ∂yJ(x̃k , ỹk )

pk
x −→

k→+∞
p∗x , q

k
y −→

k→+∞
q∗y

6=⇒ (p∗x , q
∗
y ) ∈ ∂xJ(x∗, y∗)× ∂yJ(x∗, y∗)
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Partial optimization

xk+1 ←− optimization of J(·, yk )
yk+1 ←− optimization of J(xk+1, ·)

First-order optimality conditions give
pk

x ∈ ∂xJ(xk+1, yk ) and qk
y ∈ ∂yJ(xk+1, yk+1)

Usually, one proves that pk
x → 0 and qk

y → 0 with (xk , yk )→ (x∗, y∗)

Under some conditions (convexity, smoothness...) this implies that

• (0, 0) ∈ ∂xJ(x∗, y∗)× ∂yJ(x∗, y∗) (e.g. H differentiable)

• ∂xJ(x∗, y∗)× ∂yJ(x∗, y∗) = ∂J(x∗, y∗) (e.g. J convex or H smooth)

In general (0, 0) /∈ ∂J(x∗, y∗)

i.e. (x∗, y∗) is NOT a critical point
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Convergence of ASAP

Assume inf
x,y

J(x , y) = F (x) + G (y) + H(x , y) > −∞
ASAP: Choose τ < 1/Lip(∇F ) and σ < 1/Lip(∇G ) and compute{

xk+1 ∈ proxτH(·,yk )(x
k − τ ∇F (xk ))

yk+1 ∈ proxσH(xk+1,·)(y
k − σ∇G (yk ))

Convergence in value
If the iterations are computable
(i.e. F and G smooth, and prox of H(·, yk ) and H(xk+1, ·) computable)
then the sequence J(xk , yk ) decreases to a finite value J∗

(ASAP is a descent scheme)
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Convergence of ASAP (2)

Convergence to the set of critical points
If the iterations are computable, and

• H is continuous on its closed domain

• ∂xH(x , y)× ∂yH(x , y) ⊂ ∂H(x , y)
(e.g. H is differentiable)

• the parametric closedness of the partial subdifferentials holds for H
(e.g. H is smooth or H is biconvex)

• {(xk , yk )} is bounded (e.g. domH is bounded)

then any limit point of {(xk , yk )} is a critical point and

dist
(
(xk , yk ), crit(J)

)
−→

k→+∞
0
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Convergence of ASAP (3)

In addition,

• if ∇xH(x , ·) is locally Lipschitz

• and J has the Kurdyka- Lojasiewicz property at a critical point of J
(e.g. most of the sums/compositions of real-analytic and
semi-algebraic functions)

then ASAP generates a Cauchy (convergent) sequence
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Extensions of ASAP

Partial convexity
If H(·, y) is convex, then the stepsize τ can be chosen twice larger
If H(x , ·) is convex, then the stepsize σ can be chosen twice larger

Bregman generalization
In the backward step, the proximity operator can be replaced by a
generalized one using a Bregman distance
(e.g. for the optimization on a simplex)

Acceleration using inertia
Overrelaxation steps can be added and may lead to empirical acceleration

The ASAP algorithm (12/17)



Introduction Convergence analysis Extensions Applications Conclusion

Denoising in interferometric imagery (Onera)

Correction par méthode variationnelle des non uniformités des détecteurs d’un
interféromètre imageur, P. T., Yann Ferrec, Laurent Rousset-Rouvière, colloque
GRETSI, 2017
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Fringe separation (Onera)

Fast and Accurate Multiplicative Decomposition for Fringe Removal in Interferometric
Images, Daniel Chen Soncco, Clara Barbanson, Mila Nikolova, Andrés Almansa, Yann
Ferrec, IEEE Transactions on Computational Imaging, 2017
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Image colorization

Inertial Alternating Generalized Forward-Backward Splitting for Image Colorization
P.T., Fabien Pierre, Mila Nikolova, submitted, 2018 (HAL-01792432)
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Some concluding notes

The proposed ASAP is an alternative scheme to PALM for solving
nonsmooth and nonconvex optimization problem
Choice between ASAP and PALM depends on the structure and the
regularity of the objective
Biconvexity of the coupling term gives nice properties (large stepsizes)
Promising applications on image processing
Open questions: critical points vs. (local) minimum, initialization,
theoretical convergence rate
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Thank you for your attention!
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