

Expert in LNG

Experimental study of surface tension effects on sloshing impact loads

M. Frihat, L. Brosset and J.-M. Ghidaglia

17th International Workshop on Trends in Numerical and Physical Modeling for Industrial Multiphase Flows

October 16 - 18, 2017- ENS Paris-Saclay, Cachan (France)

Safety	Excellence	Innovation	Teamwork	Transparency

Free surface instabilities generated by the shearing gas flow during liquid impacts

Free surface instabilities: Kelvin-Helmholtz, Plateau-Rayleigh ?

Weber and Reynolds similarity: ideal scaling of surface tension and kinematic viscosity

Weber similarity

$$\rho_{l}^{[\frac{1}{\lambda}]} \frac{L_{0}^{[\frac{1}{\lambda}]} \left[u_{l}^{[\frac{1}{\lambda}]} \right]^{2}}{\sigma^{[\frac{1}{\lambda}]}} = \rho_{l}^{[1]} \frac{L_{0}^{[1]} \left[u_{l}^{[1]} \right]^{2}}{\sigma^{[1]}} \rightarrow \qquad \sigma^{[\frac{1}{\lambda}]} = \frac{\sigma^{[1]}}{\mu \lambda^{2}}$$

$$For \lambda = 40 \text{ and } \mu = 0.5 \rightarrow \qquad \sigma^{[\frac{1}{40}]} = \frac{\sigma^{[1]}}{800}$$

Reynolds similarity for L & G

$$R_{k} = \frac{U_{k}^{[\frac{1}{\lambda}]} L_{0}^{[\frac{1}{\lambda}]}}{v_{k}^{[\frac{1}{\lambda}]}} = \frac{U_{k}^{[1]} L_{0}^{[1]}}{v_{k}^{[1]}} \qquad \Rightarrow \qquad v_{k}^{[\frac{1}{\lambda}]} = \frac{v_{k}^{[1]}}{\lambda^{\frac{3}{2}}} \qquad k=l \text{ or g}$$

$$For \lambda=40 \qquad \Rightarrow \qquad v_{k}^{[\frac{1}{40}]} = \frac{v_{k}^{[1]}}{253}$$

3

Test Setups

2D tank @ Scale 1:20 & 1:40

- Transverse slice of a real tank
- 152 000 m³ LNG carrier
- Hexapod (6 ddl)
- PCB pressure sensors (piezo)
 - ▶ 40 kHz
- High-speed camera
 - ▶ 4000 fps
- Semi high-speed video camera
 - 100 fps
- Different solutions of Water and Air

Safety

► 20%H

Two types of forced motions

- Sway motion starting from rest
- Short duration
- Only the first impact is studied

Safety

Excellence

Innovation

Irregular motions

Teamwork

Transparency

Weber and Reynolds similarity: ideal scaling of surface tension and kinematic viscosity

Weber similarity

$$\rho_{l}^{[\frac{1}{\lambda}]} \frac{L_{0}^{[\frac{1}{\lambda}]} \left[u_{l}^{[\frac{1}{\lambda}]} \right]^{2}}{\sigma^{[\frac{1}{\lambda}]}} = \rho_{l}^{[1]} \frac{L_{0}^{[1]} \left[u_{l}^{[1]} \right]^{2}}{\sigma^{[1]}} \rightarrow \qquad \sigma^{[\frac{1}{\lambda}]} = \frac{\sigma^{[1]}}{\mu \lambda^{2}}$$

$$For \lambda = 40 \text{ and } \mu = 0.5 \rightarrow \qquad \sigma^{[\frac{1}{40}]} = \frac{\sigma^{[1]}}{800}$$

For $\lambda=2$ and $\mu=1$ \rightarrow

$$\sigma^{[\frac{1}{40}]} = \frac{\sigma^{[1]}}{\frac{\pi}{800}}$$
$$\sigma^{[\frac{1}{40}]} = \frac{\sigma^{[\frac{1}{20}]}}{\frac{\pi}{40}}$$

Reynolds similarity for L & G

Pressure Variability and free surface instabilities

Pressure Variability and free surface instabilities

Pressure Variability and free surface instabilities

Sources of Variability: before the first impact

- Repetable global flow before the impact.
- Local variations due to the free surface instabilities.
- Production of bubbles during the impact.

Sources of Variability: after the first impact

- Repetable global flow before the impact
- Local variations due to the free surface instabilities
- Production of bubbles during the impact
- Fall of droplets after splashing

MULTIPHASE 2017 – ENS Paris-Saclay, Cachan (France) – October 16 – 18, 2017

Sources of Variability: succession of impacts

- Repetable global flow before the impact
- Local variations due to the free surface instabilities
- Production of bubbles during the impact
- Fall of droplets after splashing
 - **Variations of the global flow**

MULTIPHASE 2017 – ENS Paris-Saclay, Cachan (France) – October 16 – 18, 2017

Flow regularization

- Energy dissipation by viscous friction
- Flow regularization brought by forced motions

Balance between production of variability and flow regularization

- The flow remains in phase even after a long duration
- Impacts always happen at the same instants (considering a tolerance window of 50 ms)

- There is a balance between production of variability and regularization which prevents the global flow to diverge
- The duration for the balance to be right can be considered as a flow memory

Impact coincidences

Excellence

Innovation

Aqueous solutions studied

Properties of the different solutions studied

Name	Composition	Density (kg/m^3)	Surface tension (mN/m)	Dynamic Viscosity (mPa.s)	Speed of Sound (m/s)
Reference	Water	998	72	1	1500
Solution 1	Water + Ethanol	997	60	1 << 1.22	1500 < < 1561
Solution 2	Water + Surfactant	998	40	1	1500
Solution 3	Water + Surfactant	998	35	1	1500
Solution 4	Water + Surfactant	998	30	1	1500
Solution 5	Water + Propanol-1	985	35	1 < < 1.5	1500 < < 1594
Solution 6	Water + Propanol-1	974	30	1 << 1.5	1594

Properties at 25° C

Innovation

Teamwork

Forced motions studied @ both scales

7 different Single Impact Waves

Safety

- 8 coincident impacts giving the highest pressures @ scale 1:20
 - A complete irregular motion (5 hours @ full scale)

Excellence

16

Effects of surface tension on Single Impact Waves at scale 1:20

SIW₁ : a = 236 mm, T = 2.47 s

Safety

Excellence

Innovation

Effects of surface tension on Single Impact Waves at scale 1:20

SIW₂ : a = 244 mm, T = 2.47 s

Excellence

Innovation

Effects of surface tension on Single Impact Waves at scale 1:20

Innovation

Teamwork

Excellence

Safety

19

Transparency

Effects of surface tension on Single Impact Waves at scale 1:40

Effects of surface tension on Coincident Impacts at scale 1:20

Effects of surface tension on Coincident Impacts at scale 1:20

Effects of surface tension on Coincident Impacts at scale 1:20

Effects of surface tension on Coincident Impacts at scale 1:40

Effects of surface tension on pressure statistics for a complete irregular test

Conclusions

The main sources of variability are:

- Free surface instabilities due to the shearing gas flow before wave impacts
- Fall of droplets after splashing
- Production of bubbles
- They are all related to surface tension
- The lower the surface tension, the lower the statistical pressure whatever the level of probability or the return period
 - True for Single impact waves
 - True for any coincident impacts from irregular tests
 - True for complete irregular tests
- Sloshing Model tests @scale 1:40 should be ideally performed with a surface tension at the interface about 800 times smaller than that at scale 1 to comply with Weber similarity
- Performing tests with water and a mixture of SF6 + N2 to get the right DR turns out to be a source of conservatism, considering this parameter separately

Excellence

Thank you for your attention

lbrosset@gtt.fr

