

Phenomenological study of the interactions between pressure waves and development of jets for simplified liquid impacts

N. Couty ^(a), Y. Jus ^(a), P.-M. Guilcher ^(b), L. Brosset ^(c), D. Le Touzé ^(d)

Outline

Introduction

- ► Flat impact of liquid on rigid wall without gas
- Impact of <u>curved</u> liquid domain on rigid wall without gas
- Conclusion

a Bureau Veritas Group Company

Introduction

Impact of LNG on insulated walls of tanks due to sloshing

Impact of a plunging wave on corrugations (Sloshel project)

Visualization of compressible effects in the liquid

Experimental (*Sloshel project*) « Flip through » impact

→ High pressure peaks were measured in some cases

Numerical (*SPH-flow*) « Large gas pocket » impact

Sequence of phenomena

A Bureau Veritas Group Company

Multiphase 2017 – ENS Cachan – 16/10/2017

Elementary Loading Processes (ELPs)

Transition between ELP1 and ELP2

▶ This phase seems to provide high pressures \rightarrow potentially important for design

► Very small scales of time and space involved → numerical models must be adapted

Pressure field inside the fluids

a Bureau Veritas Group Compa

Questions to be answered

- Pressure levels and duration of initial peaks (with accuracy)?
- ► Canonical solution: simply sum **ELP1** + **ELP2** or coupled brick **ELP1-ELP2** ?
- Consequence on scaling rules?

Means:

a Bureau Veritas Group Company

Infinite R

- Aspect ratio: L/H = 1/8
- Mass density: ρ = 455 kg/m³
- Celerity of sound: c = 1300 m/s
- lmpact velocity: $V_0 = 6.26$ m/s (corresponds to a drop of 2 m)
- Acoustic pressure: $\rho c V_0 = 37$ bar

Reminder of the results in 1D

<u>*t*</u> = 0

<u>*t* > 0</u>

Pressure field in the liquid

Pressure field in the liquid (later time)

Flat compression wave P1 $p_1(x, y, t) = \begin{cases} 0 & \text{for } t < y/c \\ p_a & \text{for } \frac{y}{c} \le t \le \frac{2H - y}{c} \\ 0 & \text{for } t > \frac{2H - y}{c} \end{cases}$

• Circular relaxation wave P3 $p_{3}(x, y, t) = \begin{cases} 0 & for \ t < \frac{\sqrt{(L+x)^{2} + y^{2}}}{c} \\ -\alpha(t) \cdot p_{a} & for \ t \ge \frac{\sqrt{(L+x)^{2} + y^{2}}}{c} \end{cases}$

Time-space pressure distribution on the wall: p(x/L, 0, t)

a Bureau Veritas Group Company

Finite R

Displacement of the geometrical contact point

Displacement of the geometrical contact point <u>assuming V₀t « R</u> (small vertical displacement w.r.t. R):

$$r_c(t) \approx \sqrt{2RV_0t}$$

Speed of the geometrical contact point:

a Bureau Veritas Group Compan

$$V_c(t) \approx \sqrt{\frac{RV_0}{2t}} \Rightarrow \text{Firstly}, V_C \gg c$$

• Existence of a critical time
$$t_{cr} \approx \frac{Rv_0}{2c^2}$$
 after which $V_c < c$

Pressure field in the liquid column

SPH-flow computation

Acoustic phase (compressible, ELP1)

• As long as $V_c > c$:

- Purely acoustic phase
- The jet cannot start
- Succession of impacts at the contact point:

⁽¹⁾ Knežević K. H. (1972). *High-velocity impact of a liquid droplet on a rigid surface: the effect of liquid compressibility*. Dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctor of Technical Sciences.

Rein M. (1993). *Phenomena of liquid drop impact on solid and liquid surfaces*. Fluid Dynamics Research, vol. 12, pp 61-93.

Birth of the jet (numerical...)

Horizontal velocity field (SPH-flow)

time

Multiphase 2017 - ENS Cachan - 16/10/2017

What we had in mind!

Pressure field measured in experimental impact of a cylinder ⁽¹⁾

⁽¹⁾ Faltinsen O. M. (1990). Sea loads on ships and offshore structures. Cambridge University Press.

Multiphase 2017 – ENS Cachan – 16/10/2017

Time-space pressure distribution on the wall

B U R E A U

Top view

Geometrical / numerical positions of the contact point

Existing works

- Some references in the litterature about the impact of droplets
- But lack of formulation describing the whole ELP1+ELP2 phenomenon
- ELP2 may be compressible before getting incompressible

Pressure field at the wall at different time instants ⁽¹⁾

⁽¹⁾ Rochester M. C. (1977). *The impact of a solid drop with a solid surface*. University of Cambridge.

a Bureau Veritas Group Company

Conclusion

How the pressure field on the wall might look like

Pressure field measured in experiment of impact of a rigid cylinder ⁽¹⁾

⁽¹⁾ Faltinsen O. M. (1990). Sea loads on ships and offshore structures. Cambridge University Press.

Conclusion

- Pressure on the wall exceeds $\rho c V_0$! :
 - Rather unexpected
 - Be careful: potentially very short in time and concentrated in space
- References found in the litterature (impact of droplets, Koropkin, etc.)
- Phenomenology to complete
- Now we have to go deeper in the formulations:
 - ELP1: analytical model possible
 - ELP2: « compressible Wagner theory »?

Aim unchanged:

- Canonical model to represent this phase by locally approaching the crest free surface by a constant curvature
- Scale rules

Perspectives :

Addition of model of local small gas pocket in the crest

a Bureau Veritas Group Company

Thank you for your attention

nicolas.couty@hydrocean.fr