Surface tension implementation, verification and validation for separated two-phase flows

S. Fortin¹, S. Étienne¹, C. Béguin¹, D. Pelletier¹, L. Brosset^{*}

¹ Mechanical Engineering Department, École Polytechnique de Montréal * Liquid motion department, GTT (GazTransport&Technigaz)

17 Octobre 2017

MULTIPHASE 2017

Surface tension implementation in CADYF

Verification and validation

- Water droplets shapes under the effect of gravity
- Water droplets oscillation

Numerical Simulation of Kelvin-Helmholtz Instability

- Model presentation
- Results

Surface tension implementation in CADYF

Verification and validation

- Water droplets shapes under the effect of gravity
- Water droplets oscillation

3

Numerical Simulation of Kelvin-Helmholtz Instability

- Model presentation
- Results

About CADYF

- Developed at Polytechnique Montréal.
- Stands for Computer-Assisted DYnamics of Fluids
- Finite element program for analysis of planar, axi-symmetric, axi-symmetric swirl and three dimensional Navier-Stokes flows.
- Particularities :
 - Transient simulations with adaptive time step and order.
 - Two-phase flows (fluid-structure and fluid-fluid) using interface tracking method.
 - Monolithic resolution between phases and pseudo-solid mesh deformation.

Surface tension calculation

 Interface curvature is computed using the following relation :

$$\kappa = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{3/2}}$$

- where the derivatives are computed using parametric finite differences.
- τ_{σ} is applied using reaction method.

$$\tau_{\sigma} = \sigma \kappa h_{e}$$

2

Verification and validation

- Water droplets shapes under the effect of gravity
- Water droplets oscillation

Numerical Simulation of Kelvin-Helmholtz Instability

- Model presentation
- Results

Surface tension implementation in CADYF

Verification and validation

• Water droplets shapes under the effect of gravity

Water droplets oscillation

Numerical Simulation of Kelvin-H

- Model presentation
- Results

Theoretical Background

• Young-Laplace equation.

$$\gamma(r, r', r'') = \gamma_a + \beta[r_a - \cos(\theta)]$$
 with $\beta = \frac{\Delta \rho g}{\sigma}$

• Solved with ODE45 from Matlab.

Numerical simulation

- Transient simulation with CADYF using the shape from Y-L equation as initial interface shape.
- Displacement of the interface is less than 5.10⁻³ (mm) for a mesh of 66 elements at the interface.

Verification and validation

• Water droplets shapes under the effect of gravity

Water droplets oscillation

- Model presentation
- Results

Theoretical Background

$$r(t,\theta) = \sqrt{R^2 - \frac{R_n(t)^2}{2} + R_n(t)\cos(n\theta)}$$

where R is the steady droplet radius and $R_n(t) = r_n \sin(\omega_n t)$ is the oscillation of the droplet.

Theoretical Background (Fundamental Frequency)

• Potential energy of a 2D oscillating droplet :

$$E_p = \sigma L_n \rightarrow k_{eq} = \frac{\sigma \pi}{R} (n^2 - 1)$$

• Kinetic energy of a 2D oscillating droplet :

$$E_{k} = \frac{\rho}{2} \int_{0}^{2\pi} \left[\Phi \frac{\mathrm{d}\Phi}{\mathrm{d}r} \right]_{r=R} R \mathrm{d}\theta$$
$$\rightarrow m_{eq} = \frac{(\rho_{1} + \rho_{2})\pi R^{2}}{n}$$

where Φ is the velocity potential.

• Frequency of a 2D oscillating droplet.

$$\omega_n = \frac{k_{eq}}{m_{eq}} = (n^3 - n) \frac{\sigma}{(\rho_1 + \rho_2)R^3}$$

Fundamental		
n	Frequency (Hz)	
2	20.8	
4	65.8	
6	123.1	
8	190.7	

Same relation as Lord Rayleigh (1879).

Theoretical Background (Equivalent Damping)

• From the Batchelor formula we find the dissipation power in the global system :

$$P_{d} = c_{eq} \dot{R_{n}}^{2} = 2\mu_{1} \int_{\Omega_{1}} e_{ij}^{1} e_{ij}^{1} dV + 2\mu_{2} \int_{\Omega_{2}} e_{ij}^{2} e_{ij}^{2} dV$$

with $e_{ij}^{k} = \frac{1}{2} \left(\frac{\partial u_{i}^{k}}{\partial x_{j}} + \frac{\partial u_{j}^{k}}{\partial x_{i}} \right)$

which gives us :

$$\zeta = (2n-2)\sqrt{\frac{n}{n^2-1}}Oh$$
avec $Oh = \frac{2\pi(\mu_1 + \mu_2)}{(\rho_1 + \rho_2)R\sigma}$

$$\begin{pmatrix} n & \text{Ratio } \zeta \\ 2 & 0.192 \% \\ 4 & 0.365 \% \\ 6 & 0.488 \% \\ 8 & 0.588 \% \end{pmatrix}$$

Damping

Numerical Simulation

- Transient simulation with CADYF (water/air) using the fully deformed interface as initial shape.
- 23 000 stabilized P1-P1 elements (80 on the interface) was found satisfactory.

Numerical Simulation : Results

Numerical Simulation : Results

Numerical Simulation : Animation

9 times slowed down

S. Fortin & al.

MULTIPHASE 2017

Polytechnique Montréal 13 / 23

Verification an

- Water droplets shapes under the effect of gravity
- Water droplets oscillation

Numerical Simulation of Kelvin-Helmholtz Instability

- Model presentation
- Results

Verification and validation

- Water droplets shapes under the effect of gravity
- Water droplets oscillation

Numerical Simulation of Kelvin-Helmholtz Instability Model presentation

Results

Model presentation

Thorpe's experiment

S	Fortin	8,	-
	1 OI LIII	œ	aı

Model presentation

Dimensional analysis

• 5 dimensionless numbers $(U_r = \sqrt{gH})$:

$$\frac{\rho_1}{\rho_2}; \quad \frac{\mu_1}{\mu_2}; \quad \theta; \quad \frac{\rho_1 U_r^2 H}{\sigma} = We; \quad \frac{\rho_1 U_r H}{\mu_1} = Re$$

• Dimensionless amplitude :

$$\alpha^* = \frac{\alpha}{H}$$
 with $\alpha = \max[y(x_i)]$ where $x_i \in [L/3, 2L/3]$

• Dimensionless time : • Dimensionless wavelength :

$$t^* = t \sqrt{rac{g}{H}}$$

$$\lambda^* = \frac{\lambda}{H}$$

.

• Thorpe's experiment :

$$Ne = 689$$
 and $Re = 23937$

Remeshing

Surface Tension

Verification and validation

- Water droplets shapes under the effect of gravity
- Water droplets oscillation

Numerical Simulation of Kelvin-Helmholtz Instability

- Model presentation
- Results

Results comparison

Results

Results comparison

- Most unstable wave length :
- Instability seems to appear at a relative velocity of 0.28m/s which is larger than linear theory prediction $(U_c \approx 0.2m/s)$

Results

Vorticity field

Similarity

References

- [1] L. Rayleigh. On the capillary phenomena of jets. Proc. R. Soc. London, 29(196-199) :71-97, 1879.
- [2] G. K. Batchelor. An introduction to fluid dynamics. Cambridge university press, New York, 2000.
- [3] S. A. Thorpe. Experiments on instability of stratified shear flows : immiscible fluids. JFM, 39(1) :25-48, 1969.
- [4] L. Štrubelj et I. Tiselj. Numerical simulations of basic interfacial instabilities with incompressible two-fluid model. Nuclear Engineering and Design, 241 :1018-1023, 2011.

${\sf Questions}\,?$