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Surface tension implementation in CADYF

About CADYF

Developed at Polytechnique Montréal.
Stands for Computer-Assisted DYnamics of Fluids
Finite element program for analysis of planar, axi-symmetric,
axi-symmetric swirl and three dimensional Navier-Stokes flows.
Particularities :

Transient simulations with adaptive time step and order.
Two-phase flows (fluid-structure and fluid-fluid) using interface
tracking method.
Monolithic resolution between phases and pseudo-solid mesh
deformation.
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Surface tension implementation in CADYF

Surface tension calculation

Interface curvature is
computed using the following
relation :

κ = x ′y ′′ − y ′x ′′

(x ′2 + y ′2)3/2

where the derivatives are
computed using parametric
finite differences.
τσ is applied using reaction
method.

τσ = σκhe

Imposition of contact angles :
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Verification and validation Water droplets shapes under the effect of gravity

Theoretical Background

Young-Laplace equation.

γ(r , r ′, r ′′) = γa + β[ra − cos(θ)] with β = ∆ρg
σ

Solved with ODE45 from Matlab.
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Verification and validation Water droplets shapes under the effect of gravity

Numerical simulation

Transient simulation with
CADYF using the shape from
Y-L equation as initial
interface shape.
Displacement of the interface
is less than 5.10−3 (mm) for
a mesh of 66 elements at the
interface.
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Verification and validation Water droplets oscillation

Theoretical Background

Shape of an oscillating droplet :

r(t, θ) =

√
R2 − Rn(t)2

2 + Rn(t) cos(nθ)

where R is the steady droplet radius and
Rn(t) = rn sin(ωnt) is the oscillation of
the droplet.
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Verification and validation Water droplets oscillation

Theoretical Background (Fundamental Frequency)

Potential energy of a 2D
oscillating droplet :

Ep = σLn → keq = σπ

R (n2−1)

Kinetic energy of a 2D
oscillating droplet :

Ek = ρ

2

∫ 2π

0

[
ΦdΦ

dr

]
r=R

Rdθ

→ meq = (ρ1 + ρ2)πR2

n

where Φ is the velocity
potential.

Frequency of a 2D oscillating
droplet.

ωn = keq
meq

= (n3 − n) σ

(ρ1 + ρ2)R3

Fundamental
n Frequency (Hz)
2 20.8
4 65.8
6 123.1
8 190.7

Same relation as Lord Rayleigh
(1879).
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Verification and validation Water droplets oscillation

Theoretical Background (Equivalent Damping)

From the Batchelor formula we find the dissipation power in the
global system :

Pd = ceqṘn
2 = 2µ1

∫
Ω1

e1ije1ijdV + 2µ2
∫

Ω2
e2ije2ijdV

with ek
ij = 1

2

(
∂uk

i
∂xj

+
∂uk

j
∂xi

)
which gives us :

ζ = (2n − 2)
√ n

n2 − 1Oh

avec Oh = 2π(µ1 + µ2)
(ρ1 + ρ2)Rσ

Damping
n Ratio ζ
2 0.192 %
4 0.365 %
6 0.488 %
8 0.588 %
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Verification and validation Water droplets oscillation

Numerical Simulation

Transient simulation with
CADYF (water/air) using the
fully deformed interface as
initial shape.
23 000 stabilized P1-P1
elements (80 on the interface)
was found satisfactory.
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Verification and validation Water droplets oscillation

Numerical Simulation : Results
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Verification and validation Water droplets oscillation

Numerical Simulation : Results
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Verification and validation Water droplets oscillation

Numerical Simulation : Animation

9 times slowed down
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Numerical Simulation of Kelvin-Helmholtz Instability Model presentation

Thorpe’s experiment

Comparison with Thorpe’s
experiment (1969) :
ρ1 = 780kg/m3

µ1 = 1.5mPa/s
ρ2 = 1000kg/m3

µ2 = 1.0mPa/s
σ = 0.04N/m
θ = 4.1◦
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Numerical Simulation of Kelvin-Helmholtz Instability Model presentation

Dimensional analysis

5 dimensionless numbers (Ur =
√

gH) :

ρ1
ρ2

; µ1
µ2

; θ; ρ1U2
r H
σ

= We; ρ1Ur H
µ1

= Re

Dimensionless amplitude :

α∗ = α

H with α = max [y(xi )] where xi ∈ [L/3, 2L/3]

Dimensionless time :

t∗ = t
√ g

H

Dimensionless wavelength :

λ∗ = λ

H
Thorpe’s experiment :

We = 689 and Re = 23937
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Numerical Simulation of Kelvin-Helmholtz Instability Model presentation

Remeshing
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Numerical Simulation of Kelvin-Helmholtz Instability Model presentation

Surface Tension
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Results comparison
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Numerical Simulation of Kelvin-Helmholtz Instability Results

Results comparison

Most unstable wave length :
Linear Theory λc = 27mm
Experimental λc = 25− 45mm
Numerical λc ≈ 38mm
Štrubelj λc ≈ 40mm

Instability seems to appear at a
relative velocity of 0.28m/s which is
larger than linear theory prediction
(Uc ≈ 0.2m/s)
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Numerical Simulation of Kelvin-Helmholtz Instability Results

Vorticity field

t = 2.1 s

t = 2.3 s

t = 2.5 s

t = 2.2 s

t = 2.4 s

t = 2.6 s
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Numerical Simulation of Kelvin-Helmholtz Instability Results

Similarity
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Numerical Simulation of Kelvin-Helmholtz Instability Results
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Numerical Simulation of Kelvin-Helmholtz Instability Results

Questions ?
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