Experimental investigation of cavitation inception in a confined liquid layer by laser-induced pressure pulses

Daniel Fuster1, Judith Bourguille2, Michel Arrigoni2

1 Institut D’Alembert, UPMC (Paris)
2 IRDL, ENSTA-Bretagne (Brest)

MULTIPHASE 2017
ENS-Cachan, October 16-18th 2017

Acknowledgements: ANR-ASTRID program, CACHMAP project
C. De Sainte (DGA/MRIS), G Tahan (IRDL), L. Videau (CEA)
CACHMAP ANR-ASTRID project

Can pre-existing bubbles protect the structure?

Cluster response $\Delta p = 20$ atm
Reducing damage:

Does **cavitation inception** plays a role on the system’s dynamics for strong impacts?

It is not obvious it will occur!!!

If we manage, it is interesting because it is a reversible **fracture** process.
Reducing damage:

The appearance and propagation of cracks dissipate a large amount of energy.

It is an irreversible process!!!
Proof of concept:

High intensity pressure waves in confined water to see if we can observe cavitation

Experimental setup at IRDL, ENSTA-Bretagne:

Quanta Ray Pro 350-10
Spectra-Physics
$E_{\text{max}} = 3.7 \text{ J}$
$\lambda = 1064 \text{ nm}$
Focal region: 3 mm
Power $\approx 0.5 \text{ GW/cm}^2$
Proof of concept:

High intensity pressure waves in confined water to see if we can observe cavitation

Experimental setup at IRDL, ENSTA-Bretagne:

Quanta Ray Pro 350-10
- Spectra-Physics
 - $E_{max} = 3.7$ J
 - $\lambda = 1064$ nm
 - Focal region: 3mm
 - Power ≈ 0.5 GW/cm2

Advantage: Controllable, small volume ($e = 250, 400, 750 \mu m$)
Proof of concept:

High intensity pressure waves in confined water to see if we can observe cavitation

Advantage: Controllable, small volume \((e = 250, 400, 750 \mu m)\)

Disadvantage: short pulse duration (high frequency)

The shorter the pulse duration, the higher the energy to induce cavitation
Proof of concept:

High intensity pressure waves in confined water to see if we can observe cavitation.

Characteristic times

Excitation ≈ 10 ns ($f = 0.1$ GHz)

Wave propagation in Al ≈ 0.1 μs

Wave propagation in Water ≈ 0.13-0.5 μs

Wave propagation in PMMA ≈ 1 μs
First qualitative observations:

Focal region:

\[D = 3.3\text{mm} \]

Water thickness:

\[e = 750 \, \mu\text{m} \]

Framerate:

300000 fps

Video duration:

1 ms
First qualitative observations:

Focal region: \(D = 3.3 \text{mm} \)

Water thickness: \(e = 750 \, \mu\text{m} \)

Framerate: \(300000 \, \text{fps} \)

Video duration: \(1 \, \text{ms} \)

\[E = \begin{cases} 5 \% & \text{if } D = 3.3 \text{mm} \\ 10 \% & \text{if } e = 750 \, \mu\text{m} \\ 20 \% & \text{if } 300000 \, \text{fps} \\ 40 \% & \text{if } 1 \, \text{ms} \\ 80 \% & \text{else} \end{cases} \]
First qualitative observations:

Focal region: \(D = 3.3 \text{mm} \)

Water thickness: \(e = 750 \ \mu \text{m} \)

Framerate: 300000 fps

\(E = 5 \% \)

\(E = 10 \% \)

\(E = 20 \% \)

\(E = 40 \% \)

\(E = 80 \% \)
Influence of the fluid’s properties

- More viscosity, smaller radius

- Less secondary cavitation activity

\[E = 5, 10, 20, 40, 80 \% \]

Water
Glycerol
t=0 \mu s Water

E = 5\%

E = 10\%

E = 20\%

E = 40\%

E = 80\%

Glycerol
$t=3.3 \ \mu s$ Water

Glycerol

E = 5 %

E = 10 %

E = 20 %

E = 40 %

E = 80 %
$t=6.6 \ \mu s$ Water

- $E = 5\%$
- $E = 10\%$
- $E = 20\%$
- $E = 40\%$
- $E = 80\%$

Glycerol
Short times $t < 6.6 \mu s$ Bubble Inception $E \geq 10\%E_{max}$
Short times $t < 6.6\mu s$ Bubble Inception $E \geq 10\% E_{\text{max}}$

Influence of fluid properties on PVDF measurements: $PDVFsignal \propto P$
Short times $t < 6.6\mu s$ Bubble Inception $E \geq 10\% E_{\text{max}}$

Influence of fluid properties on PVDF measurements: \(PDVFsignal \propto P \)

-WATER

-GLYCEROL

-At short times some features are common for samples with both fluids
Short times $t < 6.6\mu s$ Bubble Inception $E \geq 10\% E_{max}$

Influence of fluid properties on PVDF measurements: $PDVFsignal \propto P$

-At short times some features are common for samples with both fluids
-Signal saturates for $E > 60\%$
Short times $t < 6.6\mu s$ Bubble Inception $E \geq 10\% E_{\text{max}}$

Influence of fluid properties on PVDF measurements: $PDVFsignal \propto P$

- At short times some features are common for samples with both fluids
- Signal saturates for $E > 60\%$
- Glycerol attenuates the high frequency content faster
Short times $t < 6.6 \mu s$ Bubble Inception $E \geq 10\% E_{\text{max}}$

Influence of fluid properties on PVDF measurements: $PDVF_{\text{signal}} \propto P$

- At short times some features are common for samples with both fluids
- Signal saturates for $E > 60\%$
- Glycerol attenuates the high frequency content faster
- Unknown answer to When does bubble nucleates?
Can we see something externally? (e.g. back face velocity)
Can we see something externally? (e.g. back face velocity)
Measurement with the HV probe (or PVD: Photon Doppler Velocity)
Measurement with the VISAR (PIMM, Arts et Metiers)
We compare the two measurement techniques for Glycerol

VISAR

\[V_{\text{face}} \propto P \]

PVDF sensor

\[PDVFsignal \propto P \]
We compare the two measurement techniques for Glycerol

VISAR

\[V_{\text{face}} \propto P \]

PVDF sensor

\[PDVFsignal \propto P \]

PIMM, Arts et Metiers

Similar qualitative measurements (also for water)

But only appropriate for extremely fast events
t=13.3 μs First cav activity in bulk

E = 5 %

E = 10 %

E = 20 %

E = 40 %

E = 80 %
$t = 30 \, \mu s$: Max cav activity in bulk

$E = 5 \%$

$E = 10 \%$

$E = 20 \%$

$E = 40 \%$

$E = 80 \%$
Measurement with the HV probe

- Fast dynamics at $t > 8 \mu s$ (after bubble inception)
Measurement with the HV probe

- Fast dynamics at \(t > 8\mu s \) (after bubble inception)
- Unfortunately the HV technique does not allow to resolve such high frequencies
Measurement with the HV probe

- Fast dynamics at $t > 8\mu s$ (after bubble inception)
- Unfortunately the HV technique does not allow to resolve such high frequencies
- Evidence of negative velocities (e.g. tension states)
 For this example $p = -170 MPa$
What about longer times?
Long time evolution

Pressure fluctuations are significant while bubbles are *active*

WATER

\[E = 20\% \]
Long time evolution

Pressure fluctuations are significant while bubbles are *active*

WATER

![Image of water with different volume fractions](image)

- $E=20\%$
- $E=60\%$

![Graphs showing pressure fluctuations over time](image)
Long time evolution

Pressure fluctuations are significant while bubbles are *active*

GLYCEROL

\[E=20\% \]

\[E=80\% \]
Long time evolution \text{WATER}

- Very fast bubble appearance $t < 20 \mu s$
- Bubble expansion $20 < t < 200 \mu s$
- Bubble collapse $t_{\text{collapse}} \approx 200 - 300 \mu s$
Long time evolution \textbf{WATER}

- Very fast bubble appearance \(t < 20 \mu s \)
- Bubble expansion \(20 < t < 200 \mu s \)
- Bubble collapse \(t_{\text{collapse}} \approx 200 - 300 \mu s \)
Long time evolution WATER

\[R_{\text{max}} [\text{mm}] \approx 4 \sqrt{E_0 [\text{J}]} \]

If we consider only the energy to displace the liquid:

\[E = p_0 \pi R_{\text{max}}^2 e \]

- \(p_0 \): reference pressure
- \(e \): liquid thickness
Long time evolution **GLYCEROL**
Long time evolution **GLYCEROL**

\[
R_{\text{max}}[\text{mm}] \approx 1.65 \sqrt{E_0[\text{J}]}
\]
Bubble’s Lifetime

Bubbles in glycerol grow less but they can last even longer than in water

$E = 2.25 \text{ J}$
Rayleigh-like bubble collapse

\[T_c \approx R_{\text{max}} \sqrt{\frac{\rho_l}{\rho_0}} \]

\[U^* = \frac{R_{\text{max}}}{T_c} \sqrt{\frac{\rho_l}{\rho_0}} \]

For 3D free bubbles

Small confinement level increases the collapse velocity

For Re < 1000 viscosity starts playing a role (small \(e \), viscous liquids)

As \(e \) decreases, the collapse time increases

![Graph showing data points for different confinement levels](image)
Rayleigh-like bubble collapse

\[T_c \approx R_{\text{max}} \sqrt{\frac{\rho_l}{\rho_0}} \]
\[U^* = \frac{R_{\text{max}}}{T_c} \sqrt{\frac{\rho_l}{\rho_0}} \]

For 3D free bubbles \(U^* \approx 1 \)
Rayleigh-like bubble collapse

\[T_c \approx R_{\text{max}} \sqrt{\frac{\rho_l}{\rho_0}} \]

\[U^* = \frac{R_{\text{max}}}{T_c} \sqrt{\frac{\rho_l}{\rho_0}} \]

For 3D free bubbles \(U^* \approx 1 \)

Small confinement level increases the collapse velocity \(p_{\text{eff}} > p_0 \)

For \(Re < 1000 \) viscosity starts playing a role (small \(e \), viscous liquids)
Rayleigh-like bubble collapse

\[
T_c \approx R_{\text{max}} \sqrt{\frac{\rho_l}{\rho_0}}
\]

\[
U^* = \frac{R_{\text{max}}}{T_c} \sqrt{\frac{\rho_l}{\rho_0}}
\]

For 3D free bubbles \(U^* \approx 1 \)

Small confinement level increases the collapse velocity \(p_{\text{eff}} > p_0 \)

For \(Re < 1000 \) viscosity starts playing a role (small \(e \), viscous liquids)

As \(e \) decreases, the collapse time increases
Conclusions

$t < 6.6\mu s$ Bubble Inception in focal region $E \geq 10\% E_{max}$

$t \approx 10 - 30\mu s$ Cavitation inception in the bulk $E \geq 20\% E_{max}$

$t \leq 60 - 600\mu s$ Long term bubble dynamic effects
Conclusions

- It is possible to induce cavitation in confined geometries by laser-induced pressure pulses
 \[p \approx \text{GPa}, \ t \approx 10 \text{ ns} \]
Conclusions

- It is possible to induce cavitation in confined geometries by laser-induced pressure pulses
 \[p \approx \text{GPa}, \ t \approx 10 \text{ ns} \]
- A large bubble is observed below the impact focal zone in the path of the shock wave

PDVF measurements reveal long time pressure fluctuations in the sample directly attributed to the dynamic response of bubbles and the interactions with the plates.
Conclusions

▶ It is possible to induce cavitation in confined geometries by laser-induced pressure pulses

\[p \approx \text{GPa}, \ t \approx 10 \text{ ns} \]

▶ A large bubble is observed below the impact focal zone in the path of the shock wave

▶ The bubble’s maximum radius depends:
 ▶ Input energy \(E_0 \)
 ▶ Fluid characteristics (elasticity, viscosity?)

▶ Secondary cavitation is observed out of the impact zone for large \(E_0 \).

▶ PDVF measurements reveal long time pressure fluctuations in the sample directly attributed to the dynamic response of bubbles and the interactions with the plates.
Conclusions

- It is possible to induce cavitation in confined geometries by laser-induced pressure pulses
 \[p \approx \text{GPa}, \ t \approx 10 \text{ ns} \]
- A large bubble is observed below the impact focal zone in the path of the shock wave
- The bubble’s maximum radius depends:
 - Input energy \(E_0 \)
 - Fluid characteristics (elasticity, viscosity?)
- The bubble’s lifetime depends on \(E_0 \) (and less on the fluid properties)

Secondary cavitation is observed out of the impact zone for large \(E_0 \).
PDVF measurements reveal long time pressure fluctuations in the sample directly attributed to the dynamic response of bubbles and the interactions with the plates.
Conclusions

▶ It is possible to induce cavitation in confined geometries by laser-induced pressure pulses
 \(p \approx \text{GPa}, \ t \approx 10 \ \text{ns} \)
▶ A large bubble is observed below the impact focal zone in the path of the shock wave
▶ The bubble’s maximum radius depends:
 ▶ Input energy \(E_0 \)
 ▶ Fluid characteristics (elasticity, viscosity?)
▶ The bubble’s lifetime depends on \(E_0 \) (and less on the fluid properties)
▶ *Secondary* cavitation is observed out of the impact zone for large \(E_0 \).
Conclusions

- It is possible to induce cavitation in confined geometries by laser-induced pressure pulses $p \approx \text{GPa}$, $t \approx 10 \text{ ns}$
- A large bubble is observed below the impact focal zone in the path of the shock wave
- The bubble’s maximum radius depends:
 - Input energy E_0
 - Fluid characteristics (elasticity, viscosity?)
- The bubble’s lifetime depends on E_0 (and less on the fluid properties)
- *Secondary* cavitation is observed out of the impact zone for large E_0.
- PDVF measurements reveal long time pressure fluctuations in the sample directly attributed to the dynamic response of bubbles and the interactions with the plates
Paris-Brest cake