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The Faraday instability

Appearing at periodically accelerated interfaces, discovered by Faraday (1831)

G (t) = G0(1 + F sin ωt)

Linear analysis based on Floquet decomposition see Benjamin and Ursell (1954), Kumar
and Tuckerman (1994).

A sub-harmonic response is commonly observed, corresponding to ω/2 oscillations of the
interface.



Studying the turbulent Faraday problem

The Faraday problem is mostly studied in the context of laminar flows.

However, for miscible fluids, if the forcing F is strong enough or for sufficiently disordered
initial conditions, standing waves interact each other leading to a turbulent mixing zone
(MZ).

Miscible Faraday

Zoueshtiagh et al. JFM (2009)

see also Diwakar et al. PoF (2015)

for instability onset

As the MZ grows, resonance conditions are no longer fulfilled. This leads to a saturation of
the MZ ’s width together with a decay of turbulence intensity.



What is the final size ?



Dimensional analysis

Neglecting the influence of initial conditions and dissipative phenomena, the only control
parameters in this problem are ω, A, G0, F leading to :

Lsat =
2AG0

ω2
G(F )
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Outline

I (I) Theoretical framework
Mixing zone (MZ), stratified homogeneous turbulence (SHT) and rapid

acceleration (RA) model



(I) Equations in the Boussinesq limit

concentration
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gravity
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Mixing Zone (MZ)

∂tC + (U · ∇)C = D∆C ,

∂tU + (U · ∇)U = −∇P + 2ACG(t)n3 + µ∆U,

∇ · U = 0,

Stratified Homogeneous Turbulence
(SHT)

∂tc + (u · ∇)c =
1

L
u3 +D∆c,

∂tu + (u · ∇)u = −∇p + 2AcG(t)n3 + µ∆u,

∇ · u = 0,

L̇ =
12

L
`0 〈u3c〉 ,

See Griffond et al. JFE (2014), Soulard et
al. PoF (2014), Burlot et al. JFM (2015)



(I) The rapid acceleration (RA) model

A simple model for vertical velocity U(t, θ) and buoyancy coefficient B(t, θ) cf Gréa. PoF,
(2013).

∂tU = −2AG(t) sin2(θ)B,

∂tB =
1

L
U ,

L̇ =
12

L

Z π

0
UB sin(θ)dθ

In short, this is RDT, Hanazaki & Hunt, JFM (1996) + equation for L
It is convenient to write it on the form :

∂ttB(t, θ) +
L̇(t)

L(t)
∂tB(t, θ) +

2AG(t) sin2(θ)

L(t)
B(t, θ) = 0,

L(t) = 6

Z π

0
B2(t, θ) sin(θ)dθ + L0.



Outline

I (II) Gravity waves and mean density profile
Weakly non linear analysis and derivation of a saturation criterion



(II) How gravity waves interact with mean density profile

Considering B(t′, θ) = B(t, θ)/(6L0)1/2 and t′ = N0t with N0 = (2AG0/L0)1/2 we get :

∂ttB(t, θ)− 2
Ω̇(t)

Ω(t)
∂tB(t, θ) + sin2(θ)Ω2(t) (1 + F cos(ω/N0t)) B(t, θ) = 0,

Ω2(t) =
1

1 +
R π

0 B2(t, θ) sin(θ)dθ
.

Non linear system of second order equations.
This relatively simple model describes how gravity waves interact with the mean density
profile.

Linearising, we obtain for θ ∈ [0 π] :

∂ttB(t, θ) + sin2(θ) (1 + F cos(ω/N0t)) B(t, θ) = 0.

A Mathieu equation for each angle θ which stability is expressed in the phase diagram.
Studied by Benielli and Sommeria JFM 1998 (Merci Benjamin !)



(II) Mechanism in the stability diagram
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Idea : Saturation if all the gravity waves are stable ?



(II) Multiple-scale analysis

∂ttB(t, θ)− 2
Ω̇(t)

Ω(t)
∂tB(t, θ) + sin2(θ)Ω2(t) (1 + F cos(ω/N0t)) B(t, θ) = 0,

Ω2(t) =
1

1 +
R π

0 B2(t, θ) sin(θ)dθ
.

Same expansion for B :

B(t, θ) = ε
“
B(0)(t, τ, θ) + εB(1)(t, τ, θ) + ε2B(2)(t, τ, θ) + ε3B(3)(t, τ, θ) + ...

”
,

with τ = ε2t (we use steepest descent method to approximate integrals).

We assume further see Godreche & Manneville (2005)

N2
0/ω

2 − 1/4 = ε2∆ & F = ε2f
Close to first resonance condition with small forcing



(II) Multiple-scale analysis

At leading order

∂ttB
(0)(t, τ, θ) + sin2(θ)B(0)(t, τ, θ) = 0, at order ε,

∂ttB
(1)(t, τ, θ) + sin2(θ)B(1)(t, τ, θ) = 0, at order ε2.

General solution on the form :

B(0)(t, τ, θ) = a(τ, θ)e i sin(θ)t + a∗(τ, θ)e−i sin(θ)t ,

B(1)(t, τ, θ) = b(τ, θ)e i sin(θ)t + b∗(τ, θ)e−i sin(θ)t .

At order ε3

∂ttB
(2) + sin2(θ)B(2) = −2∂tτB

(0) + 2 sin2 θB(0)Λ(τ)− f sin2 θB(0) sin(ω/N0t)

focusing on θ = π/2 :

−2i∂τa(τ) + 2a(τ)Λ(τ)−
1

2
fa∗(τ)e−4i∆τ = 0

...with stationary solutions corresponding to

Lsat

L0
=

N2
0

ω2
(2F + 4)



(II) The saturation criterion

We have just demonstrated that for F � 1 and close to the first resonance condition that :

Lsat =
2AG0

ω2
(2F + 4) ≈ 2AG0

ω2
G(F )

where G corresponds to the first transition curve in the Mathieu stability diagram.
Is this result more general ?
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I (III) Verification of the saturation criterion
Simulations of homogeneous (SHT) and inhomogeneous (MZ) stratified

flows



(III) SHT 5123 simulation with F = 1

L(t)ω2
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(III) MZ 5123 simulation with F = 0.6

L(t)ω2
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(III) Phase diagram for SHT and MZ simulations
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(III) Phase diagram for SHT and MZ simulations

0 0.5 1
0

0.5

1
F

2AG0
Lω2

Run B,CRun B,C

sub-harmonic harmonic

Relatively weak influence of the initial Froude number.
Instability triggered for F > 0.2− 0.3 due to eddy viscosity ? (see also Falcon et al. PRE
2009)



Summary

I An weakly non-linear analysis of the mechanism describing interactions between
gravity waves and mean density profile is performed.

I We derive a saturation criterion for final states of MZ driven by the Faraday instability.

I The prediction for Ls is verified against more than 300 MZ and SHT simulations.

I We identify harmonic/ sub-harmonic transition.

I Experimental verifications ?

Paper submitted to JFM

Thank you




