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Systematic study
Physical characteristics

Non dimension numbers
• Density ratio (DR)

• Gravity Impact number

• Liquid compressibility index

Test case
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Euler equations for compressible fluids
Conservation laws

Impact : no viscosity (compressible Euler equations)

Impact : Isentropic assumption (energy equation not coupled)

Equations of state

Gases: classical Laplace equation

Liquids: isentropic stiffened gas EoS

ALE formulation

Point motion:

Volume evolution:

Mathematical model

ALE transport operator:

Mass conservation:

Momentum conservation:



Smoothed Particle Hydrodynamics
Particle approximation

Conservation laws

Discrete scheme equivalent to Finite Volume schemes

Upwind with Riemann solver

Higher order scheme with MUSCL reconstruction

Lagrangian evolution

Numerical model

Gauss function : statistical estimation



Flow description

Before impact
• Liquid acceleration
• Progressive deformation of free surface
• Gas escape
• Gas pocket formation
• Free surface instabilities

During impact
• Compression of gas pocket
• oscillations of gas pocket



Flow description
Before impact
• Pressure almost 0

During impact
• Compression of gas pocket
• Pressure oscillations inside gas pocket and liquid
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Is there always a gas pocket?

Boundary conditions for gas
• u = 0 m/s on x=0

• p = Patm on ‘outlet’ (gas free to escape)

Gas pocket entrapment due to BC
• Size of the gas pocket influenced by gas properties (DR, Mach)

• Mix of ELP3 (pure gas compression) and ELP1 (pure liquid acoustic wave)

Flow description

P=0

P=ρV2/2



Influence of physical properties 
on maximal pressure



Convergence study for Sg=1

Particle size sensitivity study
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Pmax with constant a0L (liq. speed of sound)

a
0

gas (m/s)

P
m

a
x

a
d

im
e

n
s

io
n

a
l
(-

)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

density ratio = 0.1/1000

density ratio = 1/1000

density ratio = 2/1000

density ratio = 4/1000

density ratio = 7/1000

a
0

liquid = 1500 m/s

Pmax → Pac as DR → 0 (no matter a0g)

Pmax ↘ as DR ↗

Pmax → Pac as a0g → 0 (to be confirmed)

Pmax lowest not for P0g → ∞ 



a
0

gas (m/s)

P
m

a
x

a
d

im
e

n
s

io
n

a
l
(-

)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

density ratio = 0.1/1000

density ratio = 1/1000

density ratio = 2/1000

density ratio = 4/1000

density ratio = 7/1000

a
0

liquid = 1500 m/s

Pmax with constant a0L (liq. speed of sound)

a
0

gas (m/s)

P
m

a
x

a
d

im
e

n
s

io
n

a
l
(-

)
0 500 1000 1500 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

density ratio = 0.1/1000

density ratio = 1/1000

density ratio = 2/1000

density ratio = 4/1000

density ratio = 7/1000
a

0
liquid = 474 m/s

a
0

gas (m/s)

P
m

a
x

a
d

im
e

n
s

io
n

a
l
(-

)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

density ratio = 0.1/1000

density ratio = 1/1000

density ratio = 2/1000

density ratio = 4/1000

density ratio = 7/1000

a
0

liquid = 237 m/s

Pmax → Pac as DR → 0 (no matter a0g)

Pmax ↘ as DR ↗

Pmax → Pac as a0g → 0 (to be confirmed)

Lowest Pmax influenced by a0l (ELP1/ELP3 coupling)



Comparison with Flux-IC results (2009)

Pmax with constant a0L (liq. speed of sound)
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Pmax with constant DR (density ratio)
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Weak influence of a0g for small DR
• No coupling between ELP1 and ELP3
• Pure ELP1 regime

Weak influence of a0g for small a0L
• No coupling between ELP1 and ELP3
• Pmax is lowered compared to acoustic Press.

Strong influence of a0g for large a0L
• coupling between ELP1 and ELP3



Energy transfers



Energy transfer

Phase 1: incompressible gas escape
• No gas internal energy var.
• Dominated by mech. energy transfer
• Incompressible phase
• Influence of DR only

Phase 2: compressible gas escape
• Internal & mech. Gas energy var.
• Compressible phase
• Competition between gas escape and 

compression
• Influence of a0g at escape (Machg)

Phase 3: compressible gas pocket
• Internal & mech. Gas energy var.
• Internal Liquid energy var.
• Compressible phase

Pmax



Phase 1: influence of density ratio

Energy transfer

• DR increases mech. energy transfers between liquid and gas
• DR decreases the liquid kinematic energy: impact velocity is lowered
• DR decreases the Pmax



Phase 2: influence of gas speed of sound

Energy transfer

• a0g decreases transfer of liquid mech. energy to gas internal energy
• Increase of gas ‘spring’ stiffness: more difficult to provide energy to the gas
• a0g decreases the Pmax



Comparison of 1D and 2D models

Global overview
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Small gas stiffness
• convergence of Pmax towards liquid acoustic pressure

• Verified if DR → 0, or a0G → 0

Large gas stiffness through DR increase
• Strong influence of DR during main part of gas escape

• Increase of gas pocket size

• Increase of gas stiffness

• Double influence to lower impact pressure

Large gas stiffness through a0G increase
• Increase of gas compressibility only

• Small influence on gas escape

• Less efficient than increase in DR, to reduce impact pressures

Liquid stiffness
• Small liquid stiffness: convergence of Pmax towards liquid acoustic pressure (ELP1)

• Large liquid stiffness: increase of coupling between liquid and gas stiffness (Paradox!)

Conclusions



Gas escape phase
• Understand the energy transfers due to DR, a0G

• Influence of gas Mach number on gas escape

• Is it possible to predict the gas pocket size?

• Is it possible to divide the flow into incompressible and compressible phases

• Influence of gas on free surface shape for more general liquid shapes

Perspectives



Thank you for your attention


