Mechanics of large boulder creation due to wave impacts

James G. Herterich, Rónadh Cox, Frédéric Dias

University College Dublin, Williams College, Paris-Saclay

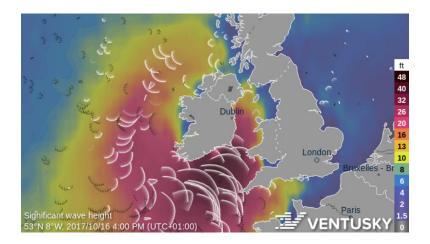
James G. Herterich, Rónadh Cox, Frédéric Dias

Mechanics of large boulder creation due to wave impacts

Aran Islands Project

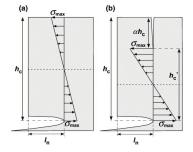
- Cliff-top storm deposits
- Annually observed boulder movement

- Three islands exposed to Atlantic storms
- Centuries since last tsunami event


Extreme Waves

Extreme Waves

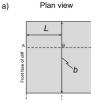
Boulder movement


...? To be investigated!

Question

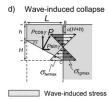
What happens when waves interact with cliffs?

Gravity Loads

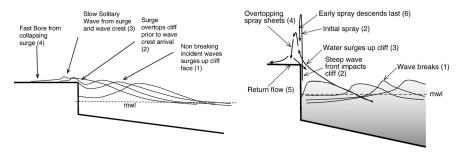

- Notch eroded
- Gravity load stress
- Crack develops
- Load increases
- Cliff collapse

Kogure et al., 2006

Wave Loads


- Gravity & wave load stress
- Stresses pull crack apart
- Cliff collapse

c) Gravity-induced collapse



Block Erosion

Wave Impacts & High Pressure Loads \rightarrow Hydraulic Fracture

- Overtopping waves
- Non-breaking wave impact

- Runup jets
- Breaking wave impact

(Hansom et al., 2008)

Block Erosion Ex 1

 $\begin{array}{ll} \text{dimensions: } 5.7\,\text{m}\,\times\,2.0\,\text{m}\,\times\,0.8\,\text{m} & 16\,\text{m} \text{ above high water} \\ \text{mass: } 22.3\,\text{t} & 166\,\text{m} \text{ inland} \end{array}$

Block Erosion Ex 2

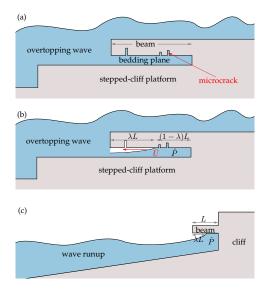
Block Erosion Ex 3

Hall et al., 2006

blocks are quarried from the cliff surface

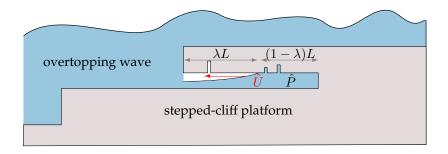
Hansom et al., 2008

the waves are capable of overtopping 10–30 m high cliffs and generate cliff-top forces sufficient to fracture bedrock and to detach and lift boulders as large as 277 m^3

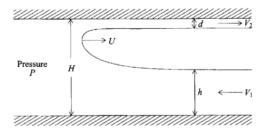

Fichaut & Suanez, 2011

[overtopping] is also capable of quarrying blocks from the cliff face close to the edge and from rock steps on the cliff top, promoting further rock fracturing

Erdmann et al., 2017

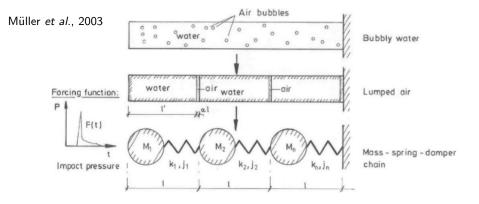

Stratified limestone bedrock with bedding planes and joint patterns allows strong wave fracturing into platy boulders, deposited in ridges Those broken from bedrock are platy from limestone strata with constant thickness

Setup: Exposed Beams



- Normal load from fluid
- Load induces bending stress
- Stress amplified in cracks and weaknesses
- Cracks propagate to complete fracture

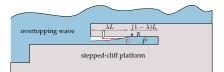
- Dynamics of crack filling determines load
- Fluid rushes in and fills from inside out



Peregrine & Kalliadasis, 1996

$$P = \frac{V_1^2 k^2}{1 - k^2} \qquad k = \sqrt{h/H}$$
$$U = \frac{V_1 k^2}{1 - k^2}$$

Filling Flows


Full air/water mixtures propagate pressure pulses when further impacts occur

Assumptions

- Piecewise spatially constant load fraction λ unfilled
- Neglect gravity load
- Quasi-static
- Euler-Bernoulli & Timoshenko beam theories
- Griffith Theory for Mode I brittle fracture

$$q = egin{cases} 0 & 0 < x < \lambda \ P(1-\lambda) & \lambda \leq x < 1 \end{cases}$$

Deformation

Euler-Bernoulli

$$(u_x, u_y, u_z) = (0, 0, w(x))$$

 $\frac{\partial^4 w}{\partial x^4} = \alpha^2 q$

Timoshenko

(

$$u_{x}, u_{y}, u_{z}) = (-z\phi(x), 0, w(x))$$
$$\frac{\partial^{3}\phi}{\partial x^{3}} = \alpha^{2}q,$$
$$\frac{\partial w}{\partial x} = \phi - \omega^{2}\frac{\partial^{2}\phi}{\partial x^{2}}$$

$$w(1) = 0,$$
 $\frac{\partial w}{\partial x}(1) = 0,$
 $\frac{\partial^2 w}{\partial x^2}(0) = 0,$ $\frac{\partial^3 w}{\partial x^3}(0) = 0.$

$$w(1) = 0, \quad \phi(1) = 0,$$

 $rac{\partial \phi}{\partial x}(0) = 0, \quad -\phi(0) + rac{\partial w}{\partial x}(0) = 0.$

 $M = -\frac{\partial^2 w}{\partial x^2} \quad \sigma = \zeta M z \qquad M = -\frac{\partial \phi}{\partial x} \quad \sigma = \zeta M z$ $\alpha^2 = \hat{P} L^4 / \delta E I \qquad \omega^2 = E I / \kappa A G L^2 \qquad \zeta = \delta^2 E / \hat{P}$

James G. Herterich, Rónadh Cox, Frédéric Dias

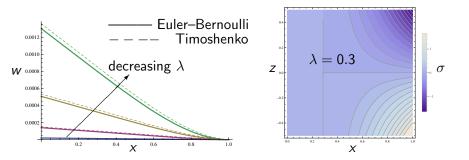
Mechanics of large boulder creation due to wave impacts

Deformation

Euler–Bernoulli

$$w = \begin{cases} \frac{\alpha^2 q}{24} (1-\lambda)^3 (3-4x+\lambda) & 0 < x < \lambda \\ \frac{\alpha^2 q}{24} \left[(x-\lambda)^4 + (1-\lambda)^3 (3-4x+\lambda) \right] & \lambda \le x < 1 \end{cases}$$

Timoshenko


$$\begin{split} \phi &= \begin{cases} \frac{\alpha^2 q}{6} (\lambda - 1)^3 & 0 < x < \lambda \\ \frac{\alpha^2 q}{6} (x - 1) \left[1 + x + x^2 - 3\lambda - 3x\lambda + 3\lambda^2 \right] & \lambda \le x < 1 \\ \end{cases} \\ w &= \begin{cases} \frac{\alpha^2 q}{24} (1 - \lambda)^2 \left[3 - 4x(1 - \lambda) - 2\lambda - \lambda^2 + 12\omega^2 \right] & 0 < x < \lambda \\ \frac{\alpha^2 q}{24} (1 - x) \left[3 - x^3 - x^2(1 - 4\lambda) - 8\lambda + 6\lambda^2 + 12\omega^2 \right] \\ & -24\lambda\omega^2 - x(1 - 4\lambda + 6\lambda^2 - 12\omega^2) \right] & \lambda \le x < 1 \end{cases}$$

Euler–Bernoulli & Timoshenko

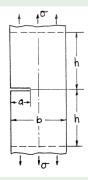
$$\sigma = \begin{cases} 0 & 0 < x < \lambda \\ -\beta^2 P \frac{(1-\lambda)(x-\lambda)^2 z}{2} & \lambda \le x < 1 \end{cases}$$

$$\beta^2 = \delta L^4 / \textit{Ib} \sim \delta^{-2}$$

Stress

 $p = 0.1 = 1/10 \times \text{Fracture stress} \rightarrow \sigma > 1$

Fracture

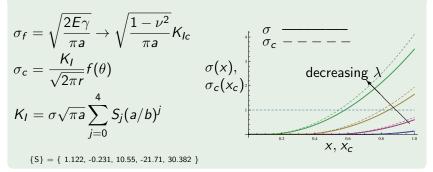

Assumptions

- Rock is brittle
- Tensile stress of a Mode I crack

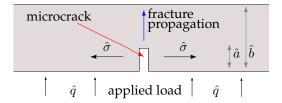
Griffith Theory

$$\sigma_{f} = \sqrt{\frac{2E\gamma}{\pi a}} \rightarrow \sqrt{\frac{1-\nu^{2}}{\pi a}} K_{lc}$$
$$\sigma_{c} = \frac{K_{l}}{\sqrt{2\pi r}} f(\theta)$$
$$K_{l} = \sigma \sqrt{\pi a} \sum_{j=0}^{4} S_{j} (a/b)^{j}$$

 $\{S\} = \{ 1.122, -0.231, 10.55, -21.71, 30.382 \}$

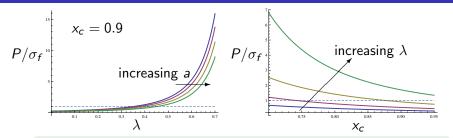

(Tada et al., 1973)

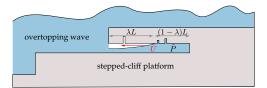
Fracture


Assumptions

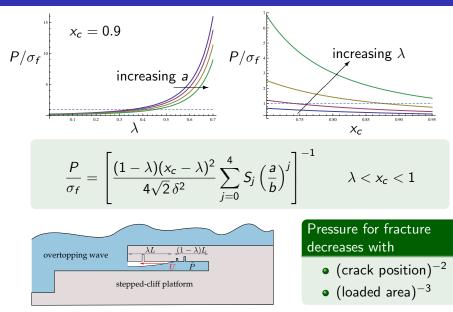
- Rock is brittle
- Tensile stress of a Mode I crack

Griffith Theory

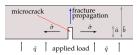

Pressure for Fracture


James G. Herterich, Rónadh Cox, Frédéric Dias

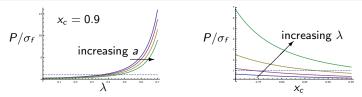
Mechanics of large boulder creation due to wave impacts


Pressure for Fracture

$$\frac{P}{\sigma_f} = \left[\frac{(1-\lambda)(x_c-\lambda)^2}{4\sqrt{2}\,\delta^2}\sum_{j=0}^4 S_j\left(\frac{a}{b}\right)^j\right]^{-1} \qquad \lambda < x_c < \infty$$



Pressure for Fracture


Conclusions

- Simple stressed-beam model for boulder creation via hydraulic fracture
- Pressure for fracture can be significantly below fracture stress
- Boulder creation is a unique way of measuring storm and wave power

