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Aran Islands Project

Cliff-top storm
deposits

Annually observed
boulder movement

Three islands exposed to Atlantic
storms

Centuries since last tsunami event
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Boulder Movement
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Extreme Waves
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Extreme Waves
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Ophelia
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Ophelia
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Ophelia

Boulder movement

...?
To be investigated!
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Question

What happens when waves interact with cliffs?
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Cliff Collapse

Gravity Loads

Notch eroded

Gravity load stress

Crack develops

Load increases

Cliff collapse

Kogure et al., 2006
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Cliff Collapse

Wave Loads

Gravity & wave load stress

Stresses pull crack apart

Cliff collapse

Kogure et al., 2012
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Block Erosion

Wave Impacts & High Pressure Loads → Hydraulic Fracture

Overtopping waves

Non-breaking wave impact

Runup jets

Breaking wave impact

(Hansom et al., 2008)
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Block Erosion Ex 1

dimensions: 5.7 m × 2.0 m × 0.8 m 16 m above high water
mass: 22.3 t 166 m inland
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Block Erosion Ex 2
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Block Erosion Ex 3

“The Roof”
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Literature References

Hall et al., 2006

blocks are quarried from the cliff surface

Hansom et al., 2008

the waves are capable of overtopping 10–30 m high cliffs
and generate cliff-top forces sufficient to fracture bedrock
and to detach and lift boulders as large as 277 m3
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Literature References

Fichaut & Suanez, 2011

[overtopping] is also capable of quarrying blocks from the
cliff face close to the edge and from rock steps on the
cliff top, promoting further rock fracturing

Erdmann et al., 2017

Stratified limestone bedrock with bedding planes and
joint patterns allows strong wave fracturing into platy
boulders, deposited in ridges .... Those broken from
bedrock are platy from limestone strata with constant
thickness
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Setup: Exposed Beams

stepped-cliff platform

overtopping wave
bedding plane
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Fracture

q̂ q̂applied load

σ̂ σ̂

HHHHHj

microcrack

6
?
â

6

?
b̂

6fracture
propagation

Normal load from fluid

Load induces bending stress

Stress amplified in cracks and weaknesses

Cracks propagate to complete fracture
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Filling Flows

overtopping wave

stepped-cliff platform

P̂

� - � -λL (1− λ)L

�
Û

Dynamics of crack filling determines load

Fluid rushes in and fills from inside out
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Filling Flows

Peregrine & Kalliadasis, 1996

P =
V 2

1 k2

1− k2
k =

√
h/H

U =
V1k2

1− k2
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Filling Flows

Full air/water mixtures propagate pressure pulses when further
impacts occur

Müller et al., 2003
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Solid Response

Assumptions

Piecewise spatially constant load – fraction λ unfilled

Neglect gravity load

Quasi-static

Euler–Bernoulli & Timoshenko beam theories

Griffith Theory for Mode I brittle fracture

q =

{
0 0 < x < λ

P(1− λ) λ ≤ x < 1

overtopping wave

stepped-cliff platform

P̂

� - � -λL (1− λ)L

�
Û
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Deformation

Euler–Bernoulli

(ux , uy , uz) = (0, 0,w(x))

∂4w

∂x4
= α2q

w(1) = 0,
∂w

∂x
(1) = 0,

∂2w

∂x2
(0) = 0,

∂3w

∂x3
(0) = 0.

M = −∂
2w

∂x2
σ = ζMz

Timoshenko

(ux , uy , uz) = (−zφ(x), 0,w(x))

∂3φ

∂x3
= α2q,

∂w

∂x
= φ− ω2∂

2φ

∂x2

w(1) = 0, φ(1) = 0,

∂φ

∂x
(0) = 0, −φ(0) +

∂w

∂x
(0) = 0.

M = −∂φ
∂x

σ = ζMz

α2 = P̂L4/δEI ω2 = EI/κAGL2 ζ = δ2E/P̂
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Deformation

Euler–Bernoulli

w =

{
α2q
24 (1− λ)3(3− 4x + λ) 0 < x < λ
α2q
24

[
(x − λ)4 + (1− λ)3(3− 4x + λ)

]
λ ≤ x < 1

Timoshenko

φ =

{
α2q

6 (λ− 1)3 0 < x < λ
α2q

6 (x − 1)
[
1 + x + x2 − 3λ− 3xλ+ 3λ2

]
λ ≤ x < 1

w =


α2q
24 (1− λ)2

[
3− 4x(1− λ)− 2λ− λ2 + 12ω2

]
0 < x < λ

α2q
24 (1− x)

[
3− x3 − x2(1− 4λ)− 8λ+ 6λ2 + 12ω2

−24λω2 − x(1− 4λ+ 6λ2 − 12ω2)
]

λ ≤ x < 1
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Stress

Euler–Bernoulli & Timoshenko

σ =

{
0 0 < x < λ

−β2P (1−λ)(x−λ)2z
2 λ ≤ x < 1

β2 = δL4/Ib ∼ δ−2
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Stress
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Fracture

Assumptions

Rock is brittle

Tensile stress of a Mode I crack

Griffith Theory

σf =

√
2Eγ

πa
→
√

1− ν2

πa
KIc

σc =
KI√
2πr

f (θ)

KI = σ
√
πa

4∑
j=0

Sj(a/b)j

{S} = { 1.122, -0.231, 10.55, -21.71, 30.382 }

(Tada et al., 1973)
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Fracture
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Pressure for Fracture

q̂ q̂applied load

σ̂ σ̂
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microcrack
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â

6

?
b̂

6fracture
propagation

σ =

{
0 0 < x < λ

β2q (x−λ)2

4 λ ≤ x < 1
β2 ∼ δ−2

P > σf

(1− λ)(xc − λ)2

4
√

2 δ2

4∑
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Sj
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λ < xc < 1
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Pressure for Fracture
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Pressure for fracture
decreases with

(crack position)−2

(loaded area)−3
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Pressure for Fracture
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(crack position)−2

(loaded area)−3
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Conclusions

q̂ q̂applied load

σ̂ σ̂
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microcrack
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6fracture
propagation

Simple stressed-beam model for boulder creation via hydraulic
fracture

Pressure for fracture can be significantly below fracture stress

Boulder creation is a unique way of measuring storm and wave
power
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