High-speed visualization and X-ray densitometry of cavitation dynamics in a venturi

Saad Jahangir, Willian Hogendoorn, Christian Poelma PhD Candidate, S.Jahangir@tudelft.nl, Multiphase Systems (P&E,3mE), TU Delft

Wednesday, 18 Oct 2017

Outline of the presentation

Introduction

- Shadowgraphy
- X-ray densitometry
- Conclusions

Introduction to cavitation

Source: EPFL

Source: Cavitation Research Laboratory/AMC

Source: City Uni & Delphi Diesel Systems

Source: Steven Ceccio (University of Michigan)

ŤUDelft

Cavitation test geometries:

- Hydrofoil
- 2D Wedge
- 3D Axisymmetric venturi
 Cavitation regimes:
- Sheet cavitation
- Partial cavitation (Type A)
- Partial cavitation (Type B)
- Shear or jet cavitation

Cavitation regimes: Sheet cavitation Partial cavitation (Type – A)

Partial cavitation (Type – B)

Shear or jet cavitation

Question to be answered:

What physics triggers different cavitation
 mechanisms and shedding of vapor clouds?

Analysis of following parameters:

- Cavity length
- Cavity shedding frequency Shadowgraphy
- Cavity growth rate
- Void fraction
 - 3D shape of cavity

- Objectives
- Shadowgraphy
- X-ray densitometry
- Conclusions

Experimental setup

Schematic diagram of the pipe flow facility

Filtered water at 45% oxygen content 8

Dimensional parameters

- **Cavitation number:** $\sigma = \frac{p p_v}{\frac{1}{2}\rho u^2}$
- Strouhal number : $St_d = \frac{f \cdot d}{u}$
- **Reynolds number:** Re = $\frac{d \cdot u}{v} \approx 1 \cdot 10^5 3 \cdot 10^5$
- **Pressure loss coefficient:** $K = \frac{\Delta p}{\frac{1}{2}\rho u^2}$

Data processing Video frame

Masked video frame

Image masking and averaging

Data processing: x-t diagram

2. Cavity growth rate

- 3. Advection velocity
- 4. Cavity length

Measurement results

Re-entrant jet regime

Bubbly shock regime

14

Transition regime

ŤUDelft

- Objectives
- Shadowgraphy
- X-ray densitometry
- Conclusions

X-ray measurement principle

X-ray projection

2-D "area" detector

X-ray setup

Portable flow loop, Department of Chemical Engineering, TU Delft (in collaboration with Prof. Dr. Rob Mudde and Evert Wagner)

Operating conditions:

- Source-detector pair used to measure attenuation
- Source was operated at 120 keV and 5-12 mA
- Flat detector CMOS model with 1548 X 1524 pixel array
- Images recorded at 60 Hz

Time-averaged images

X-ray source

High-speed camera

Comparison of x-ray and shadowgraphy images

Tomographic reconstruction

Cut planes

Side view

Void fractions

Near throat of venturi

Downstream of venturi (Bubble collapse reagion)

Conclusion

- Cavitating flow is investigated and two partial cavitation mechanisms are identified
- Slip-stick behavior is characteristic for re-entrant jet
- Bubbly shock is characterized by shock front
- Both mechanisms are distinguished in a quantitative way by means of X-t diagrams
- X-ray images show intense cavitation near wall region
- Vapor fraction decreases from 94 to 18 percent downstream but vapor cloud grows which results in bubbly water

Acknowledgements

- Prof. Dr. Ir. Christian Poelma
 PhD supervisor and promotor
- Willian Hogendoorn and Amitosh Dash
 PhD colleagues
- Prof. Rob Mudde and Evert Wagner

X-ray experiments

Thank you!

