Wave dynamics in counter-current gas-liquid flows for distillation process applications

G. Lavalle^a, Y. Li^b, S. Mergui^b, N. Grenier^a, G. Dietze^b

^aLIMSI, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Orsay, France ^bFAST, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Orsay, France

> Multiphase 2017, Paris 16-18 October 2017

Wave dynamics in counter-current gas-liquid flows for distillation process applications

G. Lavalle et al.

2 Numerical model

Numerical model

General frame

Gas-liquid flow in confined channels: non-linear interfacial waves development

ANR project "wavyFILM" among FAST, LIMSI and Air Liquide: harnessing waves on liquid films to optimize distillation processes

Main issue

- heat and mass transfer in thin films under counter-current gas is crucial in chemical applications, e.g. absorption of CO_2 in packed towers and distillation [Valluri *et al.*, *Chem. Eng. Sci.* 2005]
- measurements of heat and mass transfer in packed towers are laborious
- CFD is decisive for full flow analysis and support industrial design

Waves intensify heat and mass transfers because increase the interfacial gas-liquid area [McCready & Hanratty, AIChE 1965]

Flooding

The liquid fills the entire column: drop of performances because the gas is obstructed [Spiegel & Meier - *IChemE 1992*]

Objective: intensify heat and mass transfer while avoiding flooding

2 Numerical model

DassFlow solver: brief

- DassFlow is our DNS flow solver developed by LIMSI and IMT/INSA Toulouse: open-source, 2D, unstructured mesh
- parallelized with MPI while keeping high performances (tested up to 600 cores on French supercomputers: $\simeq 1.1 \mu s/dt/cell$)
- Formulation: two-fluid model (one velocity and one pressure in each point)
 - no advection or reconstruct the interface (the interface is captured by the scheme through the volume fraction) \longrightarrow easy implementation
 - diffuse interface model \longrightarrow interface diffusion: low diffusive numerical schemes are necessary
- Method: compressible model
 - easier implementation and general use
 - $\bullet\,$ ill conditioned for low Mach flows \longrightarrow low-Mach scheme is necessary
- Schemes: finite volume, second-order numerical schemes
- Feature: surface tension, non-isothermal, 3D (ongoing)

Two-fluid model

Index 1 and 2 for liquid and gas phases

One velocity \mathbf{u} and one mixture pressure p in each point:

$$\begin{aligned} \partial_t \tilde{\rho}_1 + \nabla \cdot (\tilde{\rho}_1 \mathbf{u}) &= 0 , \qquad \tilde{\rho}_1 = \alpha_1 \rho_1 \\ \partial_t \tilde{\rho}_2 + \nabla \cdot (\tilde{\rho}_2 \mathbf{u}) &= 0 , \qquad \tilde{\rho}_2 = \alpha_2 \rho_2 \\ \partial_t [(\tilde{\rho}_1 + \tilde{\rho}_2) \mathbf{u}] + \nabla \cdot [(\tilde{\rho}_1 + \tilde{\rho}_2) \mathbf{u} \otimes \mathbf{u} + p \mathbf{I}] &= \nabla \cdot (\tau_v + \tau_c) + (\tilde{\rho}_1 + \tilde{\rho}_2) \mathbf{g} \end{aligned}$$

Relation between p and $\tilde{\rho}$ to close the set of equations:

$$p_{1} = p_{0} + c_{1}^{2} (\tilde{\rho}_{1} / \alpha_{1} - \rho_{0})$$
$$p_{2} = p_{0} + c_{2}^{2} (\tilde{\rho}_{2} / \alpha_{2} - \rho_{0})$$
$$\alpha_{1} + \alpha_{2} = 1$$

Viscous stress: $\tau_{\mathbf{v}} = -2/3\mu\nabla\cdot\mathbf{uI} + \mu(\nabla\mathbf{u} + \nabla\mathbf{u}^{T})$ Capillary tensor (CSS formulation): $\tau_{c} = \sigma\left(\mathbf{I} - \frac{\nabla\cdot\alpha\otimes\nabla\cdot\alpha}{|\alpha|^{2}}\right)|\alpha|$

Discretization

Low-Mach scheme

Finite volume: $Q^{n+1} = Q^n - \frac{\Delta t}{V} \sum_e F_e^n I_e + \Delta t S^n$ Numerical flux at cell edges: $F_e = v_e^+ U_L + v_e^- U_R + p_e \mathbf{n}_e$ with

•
$$p_e = 1/2(p_R + p_L)$$
 centered scheme [Dellacherie JCP2010]

2
$$v_e = 1/2(\mathbf{u}_L + \mathbf{u}_R) - \gamma_e(p_R - p_L) (\gamma_e > 0$$

stabilizes the scheme)

Based on a semi-implicit low-Mach scheme [Grenier et al. *JCP2013*, Lavalle et al. *JCP2015*]:

- implicit continuity equation (via Newton method)
 - CFL condition not computed with sound speed
- explicit momentum balance equation

2 Numerical model

Validation of DassFlow solver

Fluids: DMSO and air

Validation of linear waves vs. Orr-Sommerfeld theory and of non-linear waves vs. experiments (Dietze et al. *JFM2009*, Kofman et al. *IJMF2017*)

- vertical falling film in aerostatic gas atmosphere
- vertical and inclined falling film with counter-current laminar gas flow

After validation, the aim is to analyse extremely-confined film-gas flows, with interfacial heat transfer

A note on thin-film linear instability

Liquid film in passive gas

Kapitza instability

- de-stabilizing mechanism: inertia
- stabilizing mechanisms: surface tension, viscosity, gravity

Benjamin, *JFM 1957* Yih, *PoF 1963*

Linear stability (aerostatic gas)

Comparison against Orr-Sommerfeld theory

Vertical falling film at $Re_L = 15$ in aerostatic gas atmosphere: a small sinuisoidal disturbance is applied at the free surface \longrightarrow celerity and growth of linear waves is computed

Linear stability (aerostatic gas)

Comparison against Orr-Sommerfeld theory

Vertical falling film at $Re_L = 15$ in aerostatic gas atmosphere: a small sinuisoidal disturbance is applied at the free surface \longrightarrow celerity and growth of linear waves is computed

Why no points on the left of the most unstable wavelength? With periodic domains, this means to impose a wavelength larger than the most unstable, thus the instability will follow the shorter, i.e. the most unstable.

t (s)

Wave dynamics in counter-current gas-liquid flows for distillation process applications

-0.05

G. Lavalle et al.

Linear stability (counter-current gas)

Comparison against Orr-Sommerfeld theory

Vertical falling film at $Re_L = 15$ with counter-current gas at $Re_G = 120$: a small sinuisoidal disturbance is applied at the free surface \rightarrow celerity and growth of linear waves is computed

Comments: this run lasted for 135h on 576 cores (2 millions elements) on Myria (CRIANN supercomputer) with $\simeq 1.1 \mu s/dt/dx/proc$. Still ongoing: 10% discrepancy on h_{max} so far.

Wave dynamics in counter-current gas-liquid flows for distillation process applications

G. Lavalle et al.

Numerical model

Next step on wave dynamics

Wave flattening in strongly confined channels

Use Dassflow to investigate gas-liquid dynamics in very strong confinement \longrightarrow small gap between wave crest and top wall: saturated non-linear waves might flatten.

Result obtained through second-order low-dimensional film model (Dietze & Ruyer-Quil *JFM2013*).

Conclusions and perspectives

Results:

- validation of DassFlow:
 - celerity and growth of linear waves in good agreement with Orr-Sommerfeld results
 - non-linear wave profiles in good agreement with experiments of thin films with and without counter-current laminar gas

Future tasks:

- validation of the heat transfer numerical module of DassFlow against experiments performed at FAST
- optimization of flooding regimes in confined film-gas flows (find optimum regime to intensify heat transfer avoiding flooding)

gianluca.lavalle@limsi.fr https://sites.google.com/site/gianlucalavalle/ https://wavyfilm.limsi.fr