Innovative engineering to meet the needs of the energy sector

PRINCIPIA

Oil & Gas, Renewables, Naval, Nuclear

15-661

Experimental qualification of a CFD model for simulation of LNG spillage on solid structures

B. Yerly, R. Marcer, C. Audiffren

M. Rivot, B. Lequime

R. Legent

Cryogenic spill protection improvement JIP – WP3 (2013 – 2016)

Led by TECHNIP / PRINCIPIA

Objectives

- To better understand and simulate physics of cryogenic leaks in FLNG topsides (experiments)
- To develop and qualify a CFD software for LNG spillage simulation (EOLE software from Principia)
- Expectation : to improve protection requirement assessment

EOLE CFD model for LNG spillage simulation

1. LNG jet at the leak

Atomization, two-phase jet (flashing) and induced rainout

2. LNG pool

- Pool dynamic
- Thermal transfer and vaporization on solid substrate

3. LNG overtopping

 Volume of overflowing, liquid falling along the hull

4. LNG pool on seawater

Pool dynamic and vaporization on the sea

- 5. Gas dispersion (not addressed in this study)
 - Depending on pool vaporization and environmental conditions

A step-by-step approach for validation

- Academic validations
- Validation from data of literature

- Quantitative validations versus intermediate scale experiments under cryogenic conditions (LN2)
 - > 120 tests in TECHNIP testing facility
 - ♦ > 150 T LN2

Main characteristics of the CFD code

Multiphase Navier-Stokes + turbulence

LNG, vapor, water, air

Multi-interfaces VOF model

LNG/air, LNG/water, air/water

Mixture model

for smaller droplets (for which VOF is not adapted)

Vaporization model

Source term in VOF and mixture models

Scalar transport equation for LNG vapour

- Depending on pool vaporization and environmental conditions
- Thermal fluid / solid coupling

CFD model

VOF equation + vaporization source term

$$\frac{\partial F}{\partial t} + \vec{V}.\,div(F) = \frac{\dot{q}}{\rho}$$

• with $\dot{q} = r_l F \rho_l \left(\frac{T_c - T_{sat}}{T_{sat}} \right)$

Mixture model (small droplets)

•
$$\frac{\partial(\rho S)}{\partial t} + \nabla(\vec{V}S) = T + \dot{q}$$

- With T=slip velocity between droplets and primary phase (air)
- Droplets under "cell size"

Energy equation

$$\frac{\partial(\rho E)}{\partial t} + \nabla . \left(\vec{V} (\rho E + p) \right) = \nabla [(K + K_t) \nabla T] + L \times \dot{q}$$

With L=latent heat

Transport equation for vaporized LNG

•
$$\frac{\partial(\rho C)}{\partial t} + \nabla(\vec{V}C) = \nabla[\rho(D_c + D_t)\nabla C] + \dot{q}$$

EOLE validation - jet

Jet atomization

Exp. (literature)

CFD

High pressure flashing jet

MULTIPHASE 2017: October 16, 17 & 18, 2017 ENS - Cachan

EOLE validation – thermal transfer

Temperature across a carbon / stainless steel plates

EOLE validation – boiling curve

Fluid / solid thermal transfer and vaporization

transition

EOLE validation – boiling curve

Fluid / solid thermal transfer and vaporization

CFD computed boiling curve

EOLE validation - vaporization

-0.5

Time (s)

Experimental set-up : US Bureau des Mines

Hazards of LNG spillage in marine transportation

LNG vaporization on solid substrate (static case)

Film boiling

EOLE validation - pool

LN2 pool spreading and vaporization

on solid substrates

Vaporization rate

MULTIPHASE 2017: October 16, 17 & 18, 2017 ENS - Cachan

EOLE validation - pool

LN2 pool velocity

EOLE validation – cryogenic liquid / water

LN2 pool spreading on seawater

Experiment

CFD

PRINCIPIA

MULTIPHASE 2017: October 16, 17 & 18, 2017 ENS - Cachan

EOLE : a qualified CFD software for LNG

 Verification and Validation (V&V) for EOLE qualification

Vaporization estimation error – Mesh sensitivity

Industrial application : FLNG module

Evolution of deck wetted surface percentage over time

Example of industrial application

Conclusions

LNG spillage and interactions with structures

An overall complex physical problem

A step-by-step validation methodology

 Two-phase jet, pool spreading, cryogenic fluid / solid (or water) thermal transfer, vaporization,...

Qualification of the numerical model based on V&V approach

• EOLE : a powerful validated tool for cryogenic fluid problems