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Context and motivations

Modelling compressible multiphase flows
Applications in nuclear industry, water circuit of pressurized water
reactors

 Loss-of-coolant accident Bartak, 90
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Three-phase mixture: a liquid, its vapor and a gas
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Context and motivations

Different miscibility behaviors

Mixture of A and B in a total volume V
I Immiscible mixture: phases A and B are separated, case of liquid+gas

VA + VB = V , p = pA = pB (Pressures equality at equilibrium)

I Miscible mixture: phases A and B are intimate, case of gases

VA = VB = V , p = pA + pB (Dalton’s law at equilibrium)

I Difficulty of the three-phase mixture:
I Gas (g) and vapor (v) are miscible
I Liquid (l) immiscible with the 2 gaseous phases
I Mass transfer between the liquid and its vapor
I No mass transfer between the gas and the liquid/vapor phase
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State of art

Huge literature for two-phase flows Flåtten, Lund, 11
I Two-fluid models Baer, Nunziato, 86

coupled Euler systems, volume fraction equation, nonconservative
terms, relaxation source terms

I Homogeneous Equilibrium models Dias et al, 10 ; Faccanoni et al, 12
Euler type system, EoS of the mixture at thermo. equilibrium

I Homogeneous Relaxation models Hurisse, 17
Relaxation towards the equilibrium EoS, source terms on fractions
equations

Works about multicomponents and 3-phase flows Müller et al, 16-17
I Models ”à la Baer-Nunziato”: mathematical structure (hyperbolicity,..),

robust numerical schemes
Perfectly immiscible or miscible mixtures

Provide a consistent mathematical model, guarantees the volume
constraint, distinguish whether phase transition occurs or not, valid for
any EoS
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Outline

1 Thermodynamical model - Gibbs’ formalism
Extensive constraints
Characterization of the thermodynamical equilibrium: partial Dalton’s
law, mixture entropy
Intensive constraints and entropies

2 Homogeneous Equilibrium/Relaxation Models
Closure laws, hyperbolicity
Relaxation process, source terms, some numerics

3 Conclusion - perspectives
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Single fluid - extensive description, assumptions Callen, 85

Fluid of mass M, energy E , occupying the volume V , described by its
entropy function

S : W = (M,V ,E )→ S(W )

Concave on C := {W ∈ (R+)3, S(W ) > −∞}
PH1 (extensive)

∀λ ∈ R+
∗ , ∀W ∈ C , S(λW ) = λS(W )

S of class C1 s.t.
∀W ∈ C ,

∂S
∂E

=
1
T
> 0

I Intensive potentials: temperature T , pressure p, chemical potential µ

TdS = dE + pdV − µdM (Gibbs’ relation)
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Three-phase model - extensive constraints

Mass Mk ≥ 0, volume Vk ≥ 0 and energy Ek ≥ 0 of the phase k = l , g , v

Extensive constraints
Mass conservation: M = Ml + Mg + Mv

Energy conservation: E = El + Eg + Ev

Immiscibility/miscibility constraints{
V = Vl + Vg

Vv = Vg
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Three-phase model - mixture entropy

Let Sk , k = l , g , v satisfying the previous assumptions
Out equilibrium :

Σ(Wl ,Wg ,Wv ) = Sl (Wl ) + Sg (Wg ) + Sv (Wv )

According to the second principle of Thermodynamics

Mixture entropy at equilibrium - without phase transition
Fix Mg ≥ 0. Let W = (M,V ,E ) be the state vector of the 3-phase
system. The equilibrium entropy of the mixture is:

with fixed Ml and Mv

SNPT (M,V ,E ,Ml ,Mg ) = max
(Wl ,Wg ,Wv )

Σ(Wl ,Wg ,Wv )

under the energy and volume constraints

Hélène Mathis (LMJL, Univiversity of Nantes) Modelling three-phase mixture 9 / 24



Three-phase model - mixture entropy

Let Sk , k = l , g , v satisfying the previous assumptions
Out equilibrium

Σ(Wl ,Wg ,Wv ) = Sl (Wl ) + Sg (Wg ) + Sv (Wv )

According to the second principle of Thermodynamics

Mixture entropy at equilibrium - with phase transition
Fix Mg ≥ 0. Let W = (M,V ,E ) be the state vector of the 3-phase
system. The equilibrium entropy of the mixture is:

SPT (M,V ,E ,Mg ) = max
(Wl ,Wg ,Wv )

Σ(Wl ,Wg ,Wv )

under the energy and volume constraints and M −Mg = Ml + Mv
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Three-phase model - characterization of the equilibrium

The thermodynamical equilibrium corresponds to
The equality of the temperatures

Tl = Tg = Tv

The Dalton’s law on the pressures of the gas and the vapor phases

pl = pg + pv

If phase transition is allowed between the liquid and its vapor then

µl = µv
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Intensive variables and constraints

System of specific volume τ = V /M > 0 and internal energy
e = E/M > 0

I Specific entropy: s(τ, e) = S(1,V /M,E/M)

Phase k = l , g , v described by
I Fractions of mass ϕk = Mk/M, volume αk = Vk/V and energy

zk = Ek/E ∈ [0, 1]
I Specific entropy: sk(τk , ek) = Sk(1, τk , ek)

Intensive constraints
Mass conservation: 1 = ϕl + ϕg + ϕv

Energy conservation: 1 = zl + zg + zv

Immiscibility/miscibility constraints{
1 = αl + αg

αv = αg
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Intensive entropy

Out equilibrium:

σ(τ, e, (ϕk)k , (αk)k , (zk)k)

=ϕl sl

(
αl

ϕl
τ,

zl

ϕl
e
)

+ ϕg sg

(
αg

ϕg
τ,

zg

ϕg
e
)

+ ϕv sv

(
αv

ϕv
τ,

zv

ϕv
e
)

Hélène Mathis (LMJL, Univiversity of Nantes) Modelling three-phase mixture 13 / 24



Intensive entropy

At thermodynamical equilibrium - without phase transition
Fix ϕg ∈ [0, 1]. Let (τ, e) be the specific state vector of the system. The
mixture entropy is given by

sNPT (τ, e, ϕl , ϕg ) = max
((αk)k ,(zk)k)

σ(τ, e, (ϕk)k , (αk)k , (zk)k)

under energy and volume constraints with fixed ϕl and ϕv
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σ(τ, e, (ϕk)k , (αk)k , (zk)k)

under energy and volume constraints and 1− ϕg = ϕl + ϕv

Properties
For fixed ϕk , k = l , g , v

sPT isn’t strictly concave wrt (τ, e) (Bachmann et al, 10)
Gibb’s relation: TdsPT = de + pdτ

Equilibrium
T := Tl = Tg = Tv and p := pl = pv + pg , and µl = µv
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Outline

1 Thermodynamical model - Gibbs’ formalism
Extensive constraints
Characterization of the thermodynamical equilibrium: partial Dalton’s
law, mixture entropy
Intensive constraints and entropies

2 Homogeneous Equilibrium/Relaxation Models
Closure laws, hyperbolicity
Relaxation process, source terms, some numerics

3 Conclusion - perspectives
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Homogeneous Equilibrium Model - without phase transition

Dellacherie, 03

∂t(ϕlρ) + ∂x(ϕlρu) = 0
∂t(ϕgρ) + ∂x(ϕgρu) = 0
∂tρ+ ∂x(ρu) = 0
∂t(ρu) + ∂x(ρu2 + p) = 0
∂t(ρE ) + ∂x((ρE + p)u) = 0

E =
1
2
u2 + e

∀k ∈ {l , g , v} : pk = pk(τk , ek), τk = ρ−1
k

ϕl + ϕg + ϕv = 1

10 equations
17 unknowns:
ρ, u,E , p, e, (ϕk)k∈{l ,g ,v}, (τk)k∈{l ,g ,v}, (ek)k∈{l ,g ,v}, (pk)k∈{l ,g ,v}
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Homogeneous Equilibrium Model - closure laws

 7 closure laws
1 Internal energy e, energy constraint: e =

∑
k ϕkek

2 Density ρ = 1/τ , volume constraint:{
τ = ϕlτl + ϕvτv

ϕgτg = ϕvτv

3 Mass conservation: 1 = ϕl + ϕg + ϕv with fixed ϕg

 Remains 4, given by the equilibrium characterization{
T (1/ρ, e, ϕl , ϕg ) := Tl = Tg = Tv

p(1/ρ, e, ϕl , ϕg ) := pl = pg + pv
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Homogeneous Equilibrium Model - entropy, hyperbolicity

Stability theorem (Mathis, 17)
The three-phase homogeneous model at equilibrium is hyperbolic

Based on an Godunov-Mock like result
 Prove that the system is symmetrizable with symmetric

positive-definite matrix P and a symmetric matrix Q

P(w)∂tw + Q(w)∂xw = 0

Lagrangian coordinates
η : (ϕl , ϕg , τ, u,E )→ −sNPT (τ,E − u2/2, ϕl , ϕg ) is an entropy of the
system
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Homogeneous Relaxation Model

Mixture pressure law p not explicit (even for simple EoS)

Relaxation model towards thermodynamical equilibrium

Add fraction Y = (αl , zl , zg ) equations: ∂tY + u∂xY = Q

∂t(ϕkρ) + ∂x(ϕρu) = 0, k = l , g
∂tzk + u∂xzk = ..., k = l , g
∂tαl + u∂xαl = ...

∂tρ+ ∂x(ρu) = 0
∂t(ρu) + ∂x(ρu2 + p) = 0
∂t(ρE ) + ∂x((ρE + p)u) = 0
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Homogeneous Relaxation Model

Relaxation pressure: p = p(1/ρ, e, (ϕ)l ,g , αl , (z)l ,g )

Weak solutions satisfy

∂t(ρσ) + ∂x(ρuσ) ≥ 0

with σ(τ, e, ϕl , ϕg , αl , zl , zg ) s.t.

Tdσ = de + pdτ +
∑

k=l ,g

∂ϕk sdϕk + ∂αl sdαl +
∑

k=l ,g

∂zk sdzk .
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Homogeneous Relaxation Model - source terms

As relaxation towards equilibrium is infinitely fast
I the fractions Y at equilibrium

Y NPT
eq (τ, e, ϕl , ϕg ) = argmax

(αl ,zl ,zg )

σ(τ, e, ϕl , ϕg , αl , zl , zg )

I Pressure p at equilibrium, partial Dalton’s law

pNPT
eq (τ, e, ϕl , ϕg ) := p(τ, e, ϕl , ϕg ,Y NPT

eq (τ, e, ϕl , ϕg ))

Multiple choice for Q(Y ) as soon as it complies with the entropy
growth criterion

I Q = λ(Y NPT
eq (τ, e, ϕl , ϕg )− Y )

Handle appearance/disappearance of phases

Same relaxation time for the 3 fractions
I Q = ∇Y σ(τ, e, ϕl , ϕg ,Y )

Different relaxation time for the 3 fractions
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A hint towards numerical approximation

Bachmann et al, 2010: application to cavitation bubble simulation
Homogeneous Equilibrium model with ϕg fixed and phase transition
Stiffened gas EoS for the liquid, perfect gas EoS for the vapor/air
Two rarefactions wave moving in opposite direction in water
1D finite volume approximation, Godunov scheme with relaxation
Density profile for several ϕg
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A hint towards numerical approximation

Bachmann et al, 2010: application to cavitation bubble simulation

 The more amount of air is important, the less is vapor in the cavitating
zone
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To Finish

Conclusions
Propose a rigorous thermodynamic framework for a liquid-vapor-gas
mixture for any EoS

Complies with the Dalton’s law in the gaseous phase

With and without phase transition between the liquid and the vapor

Homogeneous Equilibrium models are hyperbolic and admit an entropy
structure

Perspectives
 Numerical approximation of the HRM
 Compare the source terms properties (H. Ghazi for metastable states)
 Relevant test cases of three-phase mixtures Bartak, 90
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Thanks for your attention !
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