A thermodynamically consistent model of a liquid-vapor fluid with a gas

Hélène Mathis

LMJL, University of Nantes

Multiphase 2017

- Modelling compressible multiphase flows
- Applications in nuclear industry, water circuit of pressurized water reactors
- \rightsquigarrow Loss-of-coolant accident Bartak, 90

Three-phase mixture: a liquid, its vapor and a gas

O Different miscibility behaviors

- Oifferent miscibility behaviors
- Mixture of A and B in a total volume V
 - Immiscible mixture: phases A and B are separated, case of liquid+gas

 $V_A + V_B = V$, $p = p_A = p_B$ (Pressures equality at equilibrium)

Miscible mixture: phases A and B are intimate, case of gases

 $V_A = V_B = V$, $p = p_A + p_B$ (Dalton's law at equilibrium)

- Oifferent miscibility behaviors
- Mixture of A and B in a total volume V
 - Immiscible mixture: phases A and B are separated, case of liquid+gas

 $V_A + V_B = V$, $p = p_A = p_B$ (Pressures equality at equilibrium)

Miscible mixture: phases A and B are intimate, case of gases

 $V_A = V_B = V$, $p = p_A + p_B$ (Dalton's law at equilibrium)

- Difficulty of the three-phase mixture:
 - Gas (g) and vapor (v) are miscible
 - Liquid (1) immiscible with the 2 gaseous phases
 - Mass transfer between the liquid and its vapor
 - No mass transfer between the gas and the liquid/vapor phase

State of art

- Huge literature for two-phase flows Flåtten, Lund, 11
 - Two-fluid models Baer, Nunziato, 86 coupled Euler systems, volume fraction equation, nonconservative terms, relaxation source terms
 - Homogeneous Equilibrium models Dias et al, 10 ; Faccanoni et al, 12 Euler type system, EoS of the mixture at thermo. equilibrium
 - Homogeneous Relaxation models Hurisse, 17 Relaxation towards the equilibrium EoS, source terms on fractions equations

State of art

- Huge literature for two-phase flows Flåtten, Lund, 11
 - Two-fluid models Baer, Nunziato, 86 coupled Euler systems, volume fraction equation, nonconservative terms, relaxation source terms
 - Homogeneous Equilibrium models Dias et al, 10 ; Faccanoni et al, 12 Euler type system, EoS of the mixture at thermo. equilibrium
 - Homogeneous Relaxation models Hurisse, 17 Relaxation towards the equilibrium EoS, source terms on fractions equations
- Works about multicomponents and 3-phase flows Müller et al, 16-17
 - Models "à la Baer-Nunziato": mathematical structure (hyperbolicity,..), robust numerical schemes
 - S Perfectly immiscible or miscible mixtures

State of art

- Huge literature for two-phase flows Flåtten, Lund, 11
 - Two-fluid models Baer, Nunziato, 86 coupled Euler systems, volume fraction equation, nonconservative terms, relaxation source terms
 - Homogeneous Equilibrium models Dias et al, 10 ; Faccanoni et al, 12 Euler type system, EoS of the mixture at thermo. equilibrium
 - Homogeneous Relaxation models Hurisse, 17 Relaxation towards the equilibrium EoS, source terms on fractions equations
- Works about multicomponents and 3-phase flows Müller et al, 16-17
 - Models "à la Baer-Nunziato": mathematical structure (hyperbolicity,..), robust numerical schemes
 - S Perfectly immiscible or miscible mixtures
- Provide a consistent mathematical model, guarantees the volume constraint, distinguish whether phase transition occurs or not, valid for any EoS

Outline

- Extensive constraints
- Characterization of the thermodynamical equilibrium: partial Dalton's law, mixture entropy
- Intensive constraints and entropies

Homogeneous Equilibrium/Relaxation Models

- Closure laws, hyperbolicity
- Relaxation process, source terms, some numerics

3 Conclusion - perspectives

Outline

- Extensive constraints
- Characterization of the thermodynamical equilibrium: partial Dalton's law, mixture entropy
- Intensive constraints and entropies

Homogeneous Equilibrium/Relaxation Models

- Closure laws, hyperbolicity
- Relaxation process, source terms, some numerics

3 Conclusion - perspectives

Single fluid - extensive description, assumptions Callen, 85

Fluid of mass M, energy E, occupying the volume V, described by its entropy function

 $S: W = (M, V, E) \to S(W)$

Concave on C := {W ∈ (ℝ⁺)³, S(W) > −∞}
PH1 (*extensive*)

 $\forall \lambda \in \mathbb{R}^+_*, \forall W \in C, \quad S(\lambda W) = \lambda S(W)$

• S of class C^1 s.t. $\forall W \in C, \quad \frac{\partial S}{\partial E} = \frac{1}{T} > 0$

► Intensive potentials: temperature *T*, pressure *p*, chemical potential μ $TdS = dE + pdV - \mu dM$ (Gibbs' relation)

Three-phase model - extensive constraints

Mass $M_k \ge 0$, volume $V_k \ge 0$ and energy $E_k \ge 0$ of the phase k = l, g, v

Extensive constraints

- Mass conservation: $M = M_l + M_g + M_v$
- Energy conservation: $E = E_l + E_g + E_v$
- Immiscibility/miscibility constraints

$$\begin{cases} V = V_l + V_g \\ V_v = V_g \end{cases}$$

Three-phase model - mixture entropy

Let S_k , k = l, g, v satisfying the previous assumptions Out equilibrium :

 $\Sigma(W_l, W_g, W_v) = S_l(W_l) + S_g(W_g) + S_v(W_v)$

According to the second principle of Thermodynamics

Mixture entropy at equilibrium - without phase transition Fix $M_g \ge 0$. Let W = (M, V, E) be the state vector of the 3-phase system. The equilibrium entropy of the mixture is:

• with fixed M_l and M_v

$$S_{NPT}(M, V, E, M_l, M_g) = \max_{(W_l, W_g, W_v)} \Sigma(W_l, W_g, W_v)$$

under the energy and volume constraints

Three-phase model - mixture entropy

Let S_k , k = l, g, v satisfying the previous assumptions Out equilibrium

 $\Sigma(W_l, W_g, W_v) = S_l(W_l) + S_g(W_g) + S_v(W_v)$

According to the second principle of Thermodynamics

Mixture entropy at equilibrium - with phase transition

Fix $M_g \ge 0$. Let W = (M, V, E) be the state vector of the 3-phase system. The equilibrium entropy of the mixture is:

 $S_{PT}(M, V, E, M_g) = \max_{(W_l, W_g, W_v)} \Sigma(W_l, W_g, W_v)$

under the energy and volume constraints and $M - M_g = M_l + M_v$

Three-phase model - characterization of the equilibrium

The thermodynamical equilibrium corresponds to

• The equality of the temperatures

$$T_I = T_g = T_v$$

• The Dalton's law on the pressures of the gas and the vapor phases

 $p_l = p_g + p_v$

If phase transition is allowed between the liquid and its vapor then

 $\mu_I = \mu_v$

Intensive variables and constraints

- System of specific volume $\tau = V/M > 0$ and internal energy e = E/M > 0
 - Specific entropy: $s(\tau, e) = S(1, V/M, E/M)$
- Phase k = l, g, v described by
 - ► Fractions of mass $\varphi_k = M_k/M$, volume $\alpha_k = V_k/V$ and energy $z_k = E_k/E \in [0, 1]$
 - Specific entropy: $s_k(\tau_k, e_k) = S_k(1, \tau_k, e_k)$

Intensive constraints

- Mass conservation: $1 = \varphi_I + \varphi_g + \varphi_v$
- Energy conservation: $1 = z_l + z_g + z_v$
- Immiscibility/miscibility constraints

$$\begin{cases} 1 = \alpha_l + \alpha_g \\ \alpha_v = \alpha_g \end{cases}$$

Out equilibrium:

$$\sigma(\tau, \mathbf{e}, (\varphi_k)_k, (\alpha_k)_k, (z_k)_k) = \varphi_l \mathbf{s}_l \left(\frac{\alpha_l}{\varphi_l} \tau, \frac{z_l}{\varphi_l} \mathbf{e}\right) + \varphi_g \mathbf{s}_g \left(\frac{\alpha_g}{\varphi_g} \tau, \frac{z_g}{\varphi_g} \mathbf{e}\right) + \varphi_v \mathbf{s}_v \left(\frac{\alpha_v}{\varphi_v} \tau, \frac{z_v}{\varphi_v} \mathbf{e}\right)$$

At thermodynamical equilibrium - without phase transition Fix $\varphi_g \in [0, 1]$. Let (τ, e) be the specific state vector of the system. The mixture entropy is given by

$$s_{NPT}(\tau, e, \varphi_I, \varphi_g) = \max_{((\alpha_k)_k, (z_k)_k)} \sigma(\tau, e, (\varphi_k)_k, (\alpha_k)_k, (z_k)_k)$$

under energy and volume constraints with fixed φ_I and φ_v

Intensive entropy

At thermodynamical equilibrium - without phase transition

Fix $\varphi_g \in [0,1]$. Let (τ,e) be the specific state vector of the system. The mixture entropy is given by

$$s_{NPT}(\tau, e, \varphi_I, \varphi_g) = \max_{((\alpha_k)_k, (z_k)_k)} \sigma(\tau, e, (\varphi_k)_k, (\alpha_k)_k, (z_k)_k)$$

under energy and volume constraints with fixed φ_I and φ_v

Properties

For fixed $\varphi_k, k = l, g, v$

- s_{NPT} is strictly concave wrt (τ, e)
- Gibb's relation: $Tds_{NPT} = de + pd\tau$

Equilibrium

•
$$T := T_I = T_g = T_v$$
 and $p := p_I = p_v + p_g$

At thermodynamical equilibrium - with phase transition

Fix $\varphi_g \in [0,1]$. Let (τ, e) be the specific state vector of the system. The mixture entropy is given by

$$s_{PT}(\tau, e, \varphi_l, \varphi_g) = \max_{((\alpha_k)_k, (z_k)_k, (\varphi_k)_{k=l, v})} \sigma(\tau, e, (\varphi_k)_k, (\alpha_k)_k, (z_k)_k)$$

under energy and volume constraints and $1 - \varphi_g = \varphi_I + \varphi_v$

Intensive entropy

At thermodynamical equilibrium - with phase transition

Fix $\varphi_g \in [0,1]$. Let (τ, e) be the specific state vector of the system. The mixture entropy is given by

$$s_{PT}(\tau, e, \varphi_l, \varphi_g) = \max_{((\alpha_k)_k, (z_k)_k, (\varphi_k)_{k=l, \nu})} \sigma(\tau, e, (\varphi_k)_k, (\alpha_k)_k, (z_k)_k)$$

under energy and volume constraints and $1 - \varphi_g = \varphi_I + \varphi_v$

Properties

For fixed $\varphi_k, k = l, g, v$

- s_{PT} isn't strictly concave wrt (τ, e) (Bachmann *et al*, 10)
- Gibb's relation: $Tds_{PT} = de + pd\tau$

Equilibrium

•
$$T:=T_l=T_g=T_v$$
 and $p:=p_l=p_v+p_g$, and $\mu_l=\mu_v$

Outline

- Extensive constraints
- Characterization of the thermodynamical equilibrium: partial Dalton's law, mixture entropy
- Intensive constraints and entropies

Homogeneous Equilibrium/Relaxation Models

- Closure laws, hyperbolicity
- Relaxation process, source terms, some numerics

Conclusion - perspectives

Homogeneous Equilibrium Model - without phase transition

Dellacherie, 03

$$\begin{cases} \partial_t(\varphi_l \rho) + \partial_x(\varphi_l \rho u) = 0\\ \partial_t(\varphi_g \rho) + \partial_x(\varphi_g \rho u) = 0\\ \partial_t \rho + \partial_x(\rho u) = 0\\ \partial_t(\rho u) + \partial_x(\rho u^2 + \rho) = 0\\ \partial_t(\rho E) + \partial_x((\rho E + \rho)u) = 0\\ E = \frac{1}{2}u^2 + e\\ \forall k \in \{l, g, v\} : p_k = p_k(\tau_k, e_k), \ \tau_k = \rho_k^{-1}\\ \varphi_l + \varphi_g + \varphi_v = 1 \end{cases}$$

- 10 equations
- 17 unknowns:

$$\rho, u, E, p, e, (\varphi_k)_{k \in \{I, g, v\}}, (\tau_k)_{k \in \{I, g, v\}}, (e_k)_{k \in \{I, g, v\}}, (p_k)_{k \in \{I, g, v\}}$$

Homogeneous Equilibrium Model - closure laws

 \rightsquigarrow 7 closure laws

1 Internal energy e, energy constraint: $e = \sum_{k} \varphi_{k} e_{k}$

2 Density $\rho = 1/\tau$, volume constraint:

$$\begin{cases} \tau = \varphi_I \tau_I + \varphi_v \tau_v \\ \varphi_g \tau_g = \varphi_v \tau_v \end{cases}$$

3 Mass conservation: $1 = \varphi_l + \varphi_g + \varphi_v$ with fixed $\varphi_g \rightarrow \varphi_v$ Remains 4, given by the equilibrium characterization

$$\begin{cases} T(1/\rho, e, \varphi_l, \varphi_g) := T_l = T_g = T_v \\ p(1/\rho, e, \varphi_l, \varphi_g) := p_l = p_g + p_v \end{cases}$$

Homogeneous Equilibrium Model - entropy, hyperbolicity

Stability theorem (Mathis, 17)

The three-phase homogeneous model at equilibrium is hyperbolic

- Based on an Godunov-Mock like result
- → Prove that the system is symmetrizable with symmetric positive-definite matrix *P* and a symmetric matrix *Q*

 $P(w)\partial_t w + Q(w)\partial_x w = 0$

- Lagrangian coordinates
- $\eta: (\varphi_l, \varphi_g, \tau, u, E) \to -s_{NPT}(\tau, E u^2/2, \varphi_l, \varphi_g)$ is an entropy of the system

Homogeneous Relaxation Model

- Mixture pressure law p not explicit (even for simple EoS)
- Relaxation model towards thermodynamical equilibrium
- Add fraction $Y = (\alpha_l, z_l, z_g)$ equations: $\partial_t Y + u \partial_x Y = Q$

$$\begin{cases} \partial_t(\varphi_k\rho) + \partial_x(\varphi_\rho u) = 0, \quad k = l, g\\ \partial_t z_k + u \partial_x z_k = ..., \quad k = l, g\\ \partial_t \alpha_l + u \partial_x \alpha_l = ...\\ \partial_t \rho + \partial_x(\rho u) = 0\\ \partial_t(\rho u) + \partial_x(\rho u^2 + p) = 0\\ \partial_t(\rho E) + \partial_x((\rho E + p)u) = 0 \end{cases}$$

Homogeneous Relaxation Model

- Relaxation pressure: $p = p(1/\rho, e, (\varphi)_{l,g}, \alpha_l, (z)_{l,g})$
- Weak solutions satisfy

 $\partial_t(\rho\sigma) + \partial_x(\rho u\sigma) \geq 0$

with $\sigma(\tau, e, \varphi_I, \varphi_g, \alpha_I, z_I, z_g)$ s.t.

$$Td\sigma = de + pd\tau + \sum_{k=l,g} \partial_{\varphi_k} sd\varphi_k + \partial_{\alpha_l} sd\alpha_l + \sum_{k=l,g} \partial_{z_k} sdz_k.$$

Homogeneous Relaxation Model - source terms

- As relaxation towards equilibrium is infinitely fast
 - the fractions Y at equilibrium

$$Y_{eq}^{NPT}(\tau, e, \varphi_l, \varphi_g) = \underset{(\alpha_l, z_l, z_g)}{\operatorname{argmax}} \sigma(\tau, e, \varphi_l, \varphi_g, \alpha_l, z_l, z_g)$$

Pressure p at equilibrium, partial Dalton's law

$$p_{eq}^{NPT}(\tau, e, \varphi_{l}, \varphi_{g}) := p(\tau, e, \varphi_{l}, \varphi_{g}, Y_{eq}^{NPT}(\tau, e, \varphi_{l}, \varphi_{g}))$$

- Multiple choice for Q(Y) as soon as it complies with the entropy growth criterion
 - $\triangleright \quad Q = \lambda(Y_{eq}^{NPT}(\tau, e, \varphi_l, \varphi_g) Y)$

Handle appearance/disappearance of phases

- Same relaxation time for the 3 fractions
- $Q = \nabla_Y \sigma(\tau, e, \varphi_I, \varphi_g, Y)$

Oifferent relaxation time for the 3 fractions

A hint towards numerical approximation

Bachmann et al, 2010: application to cavitation bubble simulation

- \bullet Homogeneous Equilibrium model with $\varphi_{\rm g}$ fixed and phase transition
- Stiffened gas EoS for the liquid, perfect gas EoS for the vapor/air
- Two rarefactions wave moving in opposite direction in water
- 1D finite volume approximation, Godunov scheme with relaxation
- Density profile for several φ_g

A hint towards numerical approximation

Bachmann et al, 2010: application to cavitation bubble simulation

A hint towards numerical approximation

Bachmann et al, 2010: application to cavitation bubble simulation

 \rightsquigarrow The more amount of air is important, the less is vapor in the cavitating zone

Hélène Mathis (LMJL, Univiversity of Nantes)

Outline

- Extensive constraints
- Characterization of the thermodynamical equilibrium: partial Dalton's law, mixture entropy
- Intensive constraints and entropies

Homogeneous Equilibrium/Relaxation Models

- Closure laws, hyperbolicity
- Relaxation process, source terms, some numerics

3 Conclusion - perspectives

To Finish

Conclusions

- Propose a rigorous thermodynamic framework for a liquid-vapor-gas mixture for any EoS
- Complies with the Dalton's law in the gaseous phase
- With and without phase transition between the liquid and the vapor
- Homogeneous Equilibrium models are hyperbolic and admit an entropy structure

Perspectives

- \rightsquigarrow Numerical approximation of the HRM
- ~> Compare the source terms properties (H. Ghazi for metastable states)
- $\rightsquigarrow\,$ Relevant test cases of three-phase mixtures Bartak, 90

To Finish

Conclusions

- Propose a rigorous thermodynamic framework for a liquid-vapor-gas mixture for any EoS
- Complies with the Dalton's law in the gaseous phase
- With and without phase transition between the liquid and the vapor
- Homogeneous Equilibrium models are hyperbolic and admit an entropy structure

Perspectives

- \rightsquigarrow Numerical approximation of the HRM
- \rightsquigarrow Compare the source terms properties (H. Ghazi for metastable states)
- $\rightsquigarrow\,$ Relevant test cases of three-phase mixtures Bartak, 90

Thanks for your attention !