A cartesian scheme for compressible multimaterials with plasticity

* I2M and Université Bordeaux ** IMB and INRIA and Université Bordeaux

T. Milcent*, A. de Brauer**, A. Iollo**

MULTIPHASE 2017, ENS Paris-Saclay, 16-18 October 2017

Physical context

Physical context

Objectives

- \longrightarrow Modeling the interaction of compressible multimaterials
- $\longrightarrow \mathsf{Transitory} \ \mathsf{regime}$
- \longrightarrow Plasticity modeling

Difficulties

- Different constitutive laws and large density ratios (gas/solid)
- Different formulations (Eulerian/Lagrangian)
- \longrightarrow Very challenging problems with many applications
 - Shock Bubble interaction
 - Impacts, Rebounds ...

IBM and cartesian mesh for FSI

Our approach : Treat the elasticity in an Eulerian way

Advantages of the Eulerian framework

- Unified formulation for the fluid and the solid
- Discretization on a fixed cartesian mesh (3D, parallelization)
- Natural treatment of large deformations

Eulerian elasticity Cottet-Maitre-M 2008

Y(x, t) : Backward characteristics.

 $Y(X(\xi,t),t) = \xi$

$$\partial_t Y + u \cdot \nabla Y = 0$$
 $[\nabla_\xi X] = [\nabla_x Y]^{-1}$

Eulerian Model

Eulerian governing equation

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) &= 0\\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u - \sigma) &= 0\\ \partial_t(\nabla Y) + \nabla(u \cdot \nabla Y) &= 0\\ \partial_t(\rho e) + \operatorname{div}(\rho e u - \sigma^T u) &= 0 \end{cases}$$

Internal energy (constitutive law to close the system)

New result : the neohookean model is hyperbolic in 3D

HLLC Riemann Solver for $\mathcal{F}(\Psi_r; \Psi_l)$

- Two fastest waves s_l and s_r
- Continuity of normal velocity and normal stress
- Rankine-Hugoniot $\longrightarrow \Psi^+$ and Ψ^-
- Sharp treatment at the interface (no oscillations)

Extension to order 2 accuracy in space with a MUSCL scheme

Copper shock tube with shear N = 1000

3D Air/Helium shock bubble interaction, $M_a = 1.22$ Mesh=1000 × 400 × 400

Media	ρ	<i>u</i> ₁	р	γ	p_∞	χ
Air (pre-shock)	1.225	0	101325	1 /	0	0
Air (post-shock)	1.6861	-113.534	159059	1.4	0	0
Helium	0.2228	0	101325	1.648	0	0

3D Air/Helium shock bubble interaction Mesh=1000 \times 400 \times 400

3D Air/Water shock bubble interaction, $M_a = 1.42$ Mesh=400 × 400 × 480

Media	ρ	<i>u</i> ₁	р	γ	а	Ь	p_∞	χ
Water (pre-shock)	1000	0	10^{5}	11	0	0	6.108	0
Water (post-shock)	1230	-432.69	10 ⁹	4.4	0	0	0.10	0
Air	1.2	0	10 ⁵	1.4	5	10^{-3}	0	0

3D Air/Water shock bubble interaction Mesh= $400 \times 400 \times 480$

3D Air/Copper impact. Mesh=600³

Media	ρ	<i>u</i> ₁	р	γ	p_∞	χ	
Copper (plate)	8900	0	10^{5}	1 22	$3.12 \cdot 10^{10}$	5.10 ¹⁰	
Copper (projectile)	8900	800	10 ⁵	4.22 3.42 · 10		5.10	
Air	1	0	10 ⁵	1.4	0	0	

3D Air/Copper impact Mesh=600³

3D Air/Water impact Mesh= 600^3

2D Air/Copper rebound. Mesh=4000²

2D Rebound Mesh=4000²

2D Rebound Mesh= 4000^2 bis

Plasticity modeling

Constitutive law

$$\partial_t (\nabla Y^e) + \nabla (u \cdot \nabla Y^e) = rac{1}{\chi au} [\nabla Y^e] \mathrm{dev}(\sigma)$$

with Von Misses criteria $f_{VM}(\sigma) = |\text{dev}(\sigma)|^2 - \frac{2}{3}(\sigma_y)^2$

$$egin{aligned} f_{VM}(\sigma) < 0 &\longrightarrow ext{elastic regime} &\longrightarrow rac{1}{ au} = 0 \ f_{VM}(\sigma) \geq 0 &\longrightarrow ext{plastic regime} &\longrightarrow rac{1}{ au}
eq 0 \end{aligned}$$

Properties of the plastic model

Plastic ODE

$$\partial_t (\nabla Y^e) = \frac{1}{\chi \tau} [\nabla Y^e] \operatorname{dev}(\sigma)$$

During the plastic process

- 1 the volume is constant
- 2 the entropy is increasing
- 3 dev(σ) is decreasing until reaching the yield surface
- 1 and 2 are classical results of the literature

New result : 3 is satified for the NeoHookean model Numerical method : splitting in time : hyperbolic step + Plastic EDO

1D impact at $700m.s^{-1}$ mesh=2000

Media	ρ (kg.m ⁻³)	γ	p_{∞} (GPa)	χ (GPa)	σ_y (GPa)	$ au_0$ (s)
Air	1	1.4	0	0	_	—
Aluminium (Al)	2712	3.5	32	26	0.06	10 ⁻⁹
Titanium	4527	2.6	44	42	1.03	10 ⁻⁸

1D impact at $700m.s^{-1}$ mesh=2000

2D impact at $1 km.s^{-1}$ mesh=2000 × 1600

Media	ρ (kg.m ⁻³)	γ	p_{∞} (GPa)	χ (GPa)	σ_y (GPa)	$ au_0$ (s)
Air	1	1.4	0	0	—	_
Iron	7860	3.9	43.6	82	0.2	2.10^{-6}
Aluminium	2712	3.5	32	26	0.06	3.10 ⁻⁷

2D impact of Iron on Aluminium plate at $1 km.s^{-1}$ mesh=2000 × 1600

3D impact at $1 km.s^{-1}$ mesh=500 × 400²

Media	ρ (kg.m ⁻³)	γ	p_{∞} (GPa)	χ (GPa)	σ_y (GPa)	$ au_0$ (s)
Air	1	1.4	0	0	—	—
Iron	7860	3.9	43.6	82	0.2	2.10^{-4}
Aluminium	2712	3.5	32	26	0.06	1.10^{-6}

3D impact of Iron on Aluminium plate at $1 km.s^{-1}$ mesh=500 × 400²

Conclusions and perspectives

Conclusions

- New theoretical results on hyperbolocity and plasticity for the neohookean model
- Simple and robust scheme-> shock bubble interaction, impacts with plasticity in 3D

Perspectives

- Semi-implicit schemes for low Mach flows
- Wide range of possible applications

References

- A simple Cartesian scheme for compressible multimaterials, JCP vol 272 p772-798 (2014)
- A Cartesian scheme for compressible multimaterial models in 3D, JCP vol 313 p121-143 (2016)
- A Cartesian scheme for compressible multimaterial hyperelastic models with plasticity, CiCP vol 22 (5) p1362-1384 (2017)