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1Variability of impact pressures

Figure: Results from the Sloshel project (2009) @ scale 1 : 6.

Local crest deformations, resulting from free surface
instabilities, are not repeatable...
...and result in variability of impact pressures

Final goal...
...is to capture this variability in a numerical model
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2Free surface instabilities

Plateau-Rayleigh: break-up of liquid filaments

Kelvin-Helmholtz

Due to velocity shear at wave crest
Inviscid linear stability analysis: unstable if1
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surface tension

)
︸ ︷︷ ︸
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+

(
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)
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Bond number

> 1

Most unstable for perturbations of wavelength λ∗KH

λ∗KH =
4π(1 +Rρ)

3
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ρgU2
≈ 0.0335

U2︸ ︷︷ ︸
LNG+NG

1Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (1961)
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3Surface tension

Two definitions of σ

Force per unit of length as a result of anisotropic
intermolecular forces at an interface of two immiscible
fluids
Energy per unit of area required to form the interface of two
immiscible fluids
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Two definitions of σ
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4The underlying Navier-Stokes model

Based on symmetry preserving
Finite Volume model

Local and adaptive
grid refinement

Parallelization:
OpenMP and MPI

Two-phase: compressible
and incompressible phase

Sharp interface using PLIC

1 1 0.2

0.9 0.4 0

0.1 0 0



4The underlying Navier-Stokes model

Based on symmetry preserving
Finite Volume model

Local and adaptive
grid refinement

Parallelization:
OpenMP and MPI

Two-phase: compressible
and incompressible phase

Sharp interface using PLIC

1 1 0.2

0.9 0.4 0

0.1 0 0



4The underlying Navier-Stokes model

Based on symmetry preserving
Finite Volume model

Local and adaptive
grid refinement

Parallelization:
OpenMP and MPI

Two-phase: compressible
and incompressible phase

Sharp interface using PLIC

1 1 0.2

0.9 0.4 0

0.1 0 0



4The underlying Navier-Stokes model

Based on symmetry preserving
Finite Volume model

Local and adaptive
grid refinement

Parallelization:
OpenMP and MPI

Two-phase: compressible
and incompressible phase

Sharp interface using PLIC

1 1 0.2

0.9 0.4 0

0.1 0 0



4The underlying Navier-Stokes model

Based on symmetry preserving
Finite Volume model

Local and adaptive
grid refinement

Parallelization:
OpenMP and MPI

Two-phase: compressible
and incompressible phase

Sharp interface using PLIC

1 1 0.2

0.9 0.4 0

0.1 0 0



5Desired properties

Surface tension wishlist:
Consistency with force or stress balance

Well-balancedness

Steady state droplet
No spurious velocities: only if

Conservation of momentum (for closed surfaces)
Easily seen if considering line force

Conservation of total energy

Ekin(t) + σ|I(t)|
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6Continuum Surface Force
Approximating the surface force with a volume force 2∫

P
σκn dS = lim

ε→0

∫
Ω
Sε dV

yields
Sε = σκ̄ε∇χ̃ε, χ(x) =

{
1 x ∈ Ωl

0 x ∈ Ωg

Mollification results in smoothing of the pressure jump
Additional resolution near interface required
CSF yields a class of models based on two ingredients:

Approximation of curvature κ̄ε (we use a local height
function)
Discretization of∇χ̃ε

2J. U. Brackbill, D. B. Kothe, C. Zemach, A continuummethod for modeling surface tension (1992)
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7Immersed Interface Method

Imposing the stress balance (inspired by our one-phase model)

Modification of the pressure gradient near the interface
Pressure jump is directly imposed (assuming

r
dp
dx

z
= 0)

Part of a general IIM framework a: ‘Two Sided GFM’
Results in a sharp pressure jump

aR. J. Leveque, Z. Li, The Immersed Interface Method for Elliptic Equations with Discontinuous
Coefficients and Singular Sources
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8Spurious velocities I

Simulation of a ‘floating’ 2D droplet of radius R
in the absence of gravity, desired steady state:

u = 0, p =

{
patm + σ

R x ∈ Ωl

patm x ∈ Ωg
Ωl
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9Spurious velocities II
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10Kelvin-Helmholtz instability

Preliminary application: effect of capillarity on development of a
2D Kelvin-Helmholtz instability

At Re = 250, for Ca =∞, 2.88, 0.288

Two modes: λ = λ∗ (fastest growing) and λ = 2λ∗

Using AMR with smallest mesh width h = 2λ∗

12·26 = 2λ∗

768
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11Summary and future work

Summary
Many consistent modeling approaches exist
CSF: Careful choice of ingredients is required!
IIM, as opposed to CSF, suppresses spurious
velocities even at low resolution

Future work
Simulation and analysis of capillary effects in
3D Kelvin-Helmholtz instabilities
Exploration of desired properties (conservation
of momentum, energy)
Other applications of IIM framework in
two-phase modeling: e.g. density, contact
discontinuities



That’s all
Questions?
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