Multiscale approach for liquid-gas flow to link homogeneous and separated multiphase flows

Miro - 1961

F.X. Demoulin, J.B. Motta, B. Duret and J. Réveillon CORIA - UMR CNRS 6614 - Normandie Université Julien.Reveillon@coria.fr

Atomization in combustion chamber

Atomization process:

As simple as...holes

Yet, impossible to predict...

A matter of scales ...

Junction stumbling block

Different numerical methods, physical outcomes and communities !!!

To describe a complex liquid phase ..

Generalized liquid-gas flows:

- 1) Single flow with two phase
- 2) Turbulent liquid flux
- 3) Surface density
- 4) Switch to Blobs / Droplets

1) Carrier Phase and Discrete

Blobs / Droplets : Multiphase flow

- 2) Liquid and Gas velocity
- 3) Droplet radius Most Used : "Lagrangian method" J. K. Dukowicz, 1980.
 Eulerian method available also : Multiphase, sectional, Qmom,...

To describe a complex liquid phase ...

Single injector hole

L_{RU}

Atomization Regimes

- B: Rayleigh regime
- C: First wind-induced regime
- D: Second wind-induced regime
- E: Atomization regime

Modeling:

RANS \rightarrow Big enough *Re* and *We* number (D and E) For simplicity: $\rho_l = cst$ and $\rho_g = cst$

Atomization regime

Ultrafast shadow imaging double-pulsed femtosecond laser *K. Lounnaci et al, 2015*

Ultrafast X-RAY *Y. Wang et al., 2008*

Interface Capturing Method *T. Menard et al, 2007*

Much more : ECN (ecn.sandia.gov), M. Linne, 2013, ...

Spray A: EE vs. LE at Argonne

- Eulerian model is better than traditional Lagrangian approach in the near nozzle region
- Lagrangian simulations: 62.5μm minimum resolution, blob injection model, 300,000 parcels

Mass-averaged velocity along axis

MULTIPHASE 2017

LES Modeling issue

Generally : no subgrid term in ICM methods

$$\frac{\partial \overline{\alpha}}{\partial t} + \frac{\partial \overline{u_j} \overline{\alpha}}{\partial x_j} = \underbrace{\partial \overline{R_{\alpha}}}_{\text{Subgrid Term}}$$

under-resolved dynamic

Low resolution → Numerical interface stabilization

[1] J. Chesnel, J. Reveillon, T. Menard, and F.X. Demoulin, *Large eddy simulation of liquid jet atomization*. Atomization and Sprays, **21**(9): p. 711-736, 2011

Interface + SG Surface density (E/E)

Description of the subgrid spray :

- Eulerian description
- Multiple objects characterization (drops, blobs, ligaments, liquid sheets, etc)

Interface density
$$\overline{\Sigma} = \frac{\text{Interface area}}{\text{Control volume}}$$

$$\overline{\begin{array}{c} \overline{\Sigma} \\ \overline{\partial \Sigma} \\ \overline{\partial t} \end{array} + \frac{\partial \overline{u}_j \overline{\Sigma}}{\partial x_j} = \frac{\partial}{\partial x_{\alpha}} \left(\overline{\Sigma} (\overline{u}_{\alpha} - \overline{u}_{\Gamma \alpha}) \right) + \overline{\Sigma}$$

To study source term -> DNS

Interface + SG Surface density (E/E)

Subgrid interface density

How to combine ICM + subgrid term

Interface Resolution Quality $IRQ_{\sum} = \frac{\sum_{min}}{\sum}$: Resolved Interface Total Interface (ELSA) 5 \mathbf{IRQ}_{Σ} Resolved 0.8 0.6 0.4 0.2 Under Resolved $IRQ_{\kappa} = \frac{1}{\Delta\kappa} = \frac{R}{2\Delta}$ IRQ_k =1.6 E -0.8 0.39

ICM combined with subgrid modeling

LES modeling of liquid atomization

MULTIPHASE 2017

DNS Validation

Meand liquid-gas surface density (m-1)

Exp. External Validation Ambient gas temperature impact on liquid and vapor penetration

Liquid and vapor penetration for the injector 1 for $P_{ini} = 180MPa$

$$T_{ch} = 790^{\circ}K$$

 $T_{ch} = 935^{\circ}K$

ICM combined with subgrid modeling

ICM + ELSA + Lagrange Dynamic adaptive numerical methods

In the dispersed aera: lack of Information

- Very small liquid volume fraction
- Wrong description of the velocity (slip velocity needed)

Solution:

- <u>Addition</u> of a Lagrangian description (diluted aera <10%)
- To transport information and correct Eulerian formulation

• Foam ELSA family of Solvers

Based on : twoLiquidMixingFoam, interFoam, compressibleInterFoam, cavitatingFoam + Lagrangian

www.foam-u.fr (French OpenFoam User Community)

Conclusion : a matter of scales

UMR 6614

COMPLEXE DE RECHERCHE

Other applications : gas/liquid mixing, unresolved interface

LES modeling of liquid atomization

MULTIPHASE 2017

Objectives : apply ELSA to aeration modeling

"Evolution of the air cavity during a depressurized wave impact." Lugni et al.

[Femto Engineering, Water wave impact on rigid wall, 2011]

Actual ELSA modeling

Objectives : apply ELSA to aeration modeling

UMR 6614

COMPLEXE DE RECHERCHI

Researchers found that animals' oscillations per second tended to decrease with increasing body size. A mouse oscillates 29 times per second, a dog like the one in this picture manages about 5, and a brown bear clocks in at 4. For animals to dry themselves, they shake at tuned frequencies of a power law the team dubbed the "wet-dog-shake rule."

DV = AR x (2pi x SF) Formula for calculating drop velocity (DV), the speed at which water droplets leave the fur. AR is animal radius, and SF is shaking frequency.

[WIRED - June 2011 - photo : getty]