

Collapse of a (non-)axisymmetric air cavity in water

Devaraj van der Meer • Oscar Enríquez • Ivo Peters • Stefan Gekle • Laura Schmidt • Utkarsh Jain • Anaïs Gauthier • Detlef Lohse

UNIVERSITY OF TWENTE.

October 17, 2017 – Paris

Disclaimer

- singularity
- (controlled) instabilities
- air entrapment
- experiments, theory & numerics

Talk by Utkarsh Jain - Wednesday at 16:30

Try this at home

... in our lab

... in our lab

... in our lab

Experimental setup

Disk pulled through interface

 V_{impact} = 1.0 m/s

 $R_{disk} = 0.03 \text{ m}$ camera @ 1000 fps

void creation

void creation void collapse

void creation
void collapse
jet creation at singularity

void creation void collapse jet creation at singularity air-entrainment "giant bubble"

Dimensional Analysis

Relevant parameters:

- disk radius $R_0 \approx 2 \text{ cm}$
- disk velocity $V \approx 1 \text{ m/s}$
- gravity $g = 9.8 \text{ m/s}^2$

$$Fr = \frac{V^2}{gR_0} \approx 5$$

We =
$$\frac{\rho V^2 R_0}{\sigma} \approx 300$$

$$\operatorname{Re} = \frac{\rho \, V R_0}{\eta} \approx 20,000$$

• density ρ = 1000 kg/m³

- viscosity η = 1.0 mPas
- surface tension σ = 0.074 N/m

(Froude number) inertia and gravity dominant (Weber number)

(Revnolds number) viscosity unimportant ⇒ potential flow incompressible: $\vec{\nabla} \cdot \vec{u} = 0 \Rightarrow$ $\nabla^2 \varphi = 0$

Boundary Integral simulations

Laplace equation for potential:

$$\nabla^2 \varphi = 0$$

irrotational (no viscosity): $\vec{\nabla} \times \vec{u} = 0 \Rightarrow \vec{u} = \vec{\nabla} \varphi$

is solved as a boundary integral:

$$\varphi(\vec{x}_0, t) = \iint_{\partial V} \left[G(|\vec{x} - \vec{x_0}|) \vec{\nabla} \varphi(\vec{x}, t) - \varphi(\vec{x}, t) \vec{\nabla} G(|\vec{x} - \vec{x_0}|) \right] \cdot d\vec{A}$$

(Green's third identity)

Unsteady Bernoulli equation provides time evolution:

$$\frac{\partial \varphi}{\partial t} + \frac{1}{2} |\vec{\nabla}\varphi|^2 = -gz - \frac{\sigma}{\rho}\kappa$$

Bl simulation vs. experiments

Fr = 3.4

Fr = 13.6

No free parameter!

Model: Slender cavity limit

Flow in horizontal layers:

 \rightarrow Assume potential flow

→ Assume axisymmetry

 \rightarrow Neglect axial flow

needed: equation for 2D fluid flow in layers

2D Rayleigh-Besant equation

Euler equation in cylindrical coordinates

Continuity equation

$$r \, u_r = R \, \dot{R}$$

Integrate with boundary conditions:

$$\frac{d}{dt}(R\dot{R})\log\frac{R}{R_{\infty}} + \frac{1}{2}\dot{R}^2 = gz$$

2D Rayleigh equation

R. Bergmann et al, PRL 96, 154505 (2006).

Void creation (at microscale)

Impact of a train V = 12.6 m/s)

BI simulation

Parabolic shape !

Cavity shape (at microscale)

W. Bouwhuis et al, preprint (2014).

Cavity shape (disc impact)

 $\Delta t_{reach} = \frac{z}{V}$ determined by impact speed

 Δt_{coll}

determined by hydrostatic pressure

$$\frac{d}{dt}(R\dot{R})\,\log\frac{R}{R_{\infty}}$$

 $+ \frac{1}{2}\dot{R}^2 = gz$

Neck radius $R(\tau)$ [experiment]

Neck radius scaling

Neck radius scaling

What is the expected scaling of the *neck radius* close to the singularity?

$$\log_{10} \tau$$

Back to 2D Rayleigh

$$R(t) \sim R_0 (t_c - t)^{1/2}$$

Rayleigh scaling in experiment?

Rayleigh scaling in experiment?

S. Gekle *et al*, PRE **80**, 036305 (2009).

How about the airflow in the cavity ?

crown splash & cavity formation

How about the airflow in the cavity ?

crown splash & cavity formation

cavity closure

down- or upwards ?

Following smoke particles

Air speed from smoke measurements

Numerical Modeling 1: Boundary-integral

 Potential flow for both liquid and air: irrotational,inviscid, incompressible

Numerical Modeling 1: Boundary-integral

Potential flow for both liquid and air:

irrotational, inviscid, incompressible

Numerical modeling 2: Multiscale

Numerical modeling 2: Multiscale

Results: Air velocity profile

Results: Air velocity profile

Results: Air velocity profile

Results: Air flow at the cavity neck

Results: Air flow at the cavity neck

S. Gekle et al., PRL 104, 024501 (2010).

Breaking axial symmetry

Instead of round disc:

Breaking axial symmetry

Instead of round disc:

use flowershaped discs with perturbation:

Experiment for *m* **= 2**

Top view

Experiment for *m* = 2

Top view

Experiment for *m* **= 2**

Top view

Basic mechanism: circular cavity

Experiments in linear regime

- Linear behavior: a << R
- Disks with 1%
 perturbation
- Water + powdered milk for visualization

A bit of theory:

Collapsing cavity with small azimuthal perturbation mode *m* around average $\overline{R}(t)$:

$$R(\theta, t) = \bar{R}(t) + a_m(t)\cos(m\theta)$$

corresponds to the flow potential:

$$\phi(r,t) = Q(t)\log r + d_m(t)r^{-m}\cos(m\theta)$$

The kinematic boundary condition at the cavity wall gives:

$$\frac{\partial \phi}{\partial r}\Big|_{r=\bar{R}(t)} = \frac{\partial R}{\partial t} \quad \Rightarrow \quad Q(t) = \bar{R}\dot{\bar{R}} \; ; \quad d_m(t) = \frac{-\bar{R}^{m+1}}{m} \left[\dot{a}_m + a_m\frac{\dot{\bar{R}}}{\bar{R}}\right]$$

Combining with Bernoulli between R_{∞} and cavity wall R(t) (dynamic b.c.):

$$\rho \left[\frac{\partial \phi}{\partial t} + \frac{1}{2} |\vec{\nabla} \phi|^2 \right]_{R_{\infty}}^{R(t)} = (P_{\infty} - P_0) + \mathbf{\dot{\mathbf{x}}}$$

after linearizing in a_m provides the amplitude equation:

$$\ddot{a}_m + \left(\frac{2\bar{R}}{\bar{R}}\right)\dot{a}_m + \left(\frac{\bar{R}}{\bar{R}}(1-m)\right)a_m = 0$$

L.E. Schmidt, N.C. Keim, W.W. Zhang, and S.R. Nagel, Nature Phys. 5, 343 (2009)

Inserting 2D Rayleigh scaling

Using the 2D Rayleigh scaling for the average radius $\overline{R}(t)$

$$\bar{R}(t) = C\sqrt{R_0 V} (t_c - t)^{1/2}$$

in the linear amplitude equation

$$\ddot{a}_m + \left(\frac{2\bar{R}}{\bar{R}}\right)\dot{a}_m + \left(\frac{\ddot{R}}{\bar{R}}(1-m)\right)a_m = 0$$

we find the solution:

$$a_m(t) = a_m(0) \cos\left(\frac{1}{2}\sqrt{m-1}\log(t_c-t) + \widetilde{\delta}\right)$$

or:

$$a_m(\bar{R}) = a_m(0) \cos\left(\sqrt{m-1}\log(\bar{R}/R_0) + \delta\right)$$

constant amplitude $a_{\rm m} \Rightarrow$ $a_{\rm m}/\bar{R}$ diverges !

frequency chirps !

Results (linear regime)

 $R(\theta, t) = \bar{R}(t) + a_m(t)\cos(m\theta)$

Results (linear regime)

Linear regime, 1% perturbation

Linear regime, 1% perturbation

Experiments in the non-linear regime

(perturbations *a* comparable to disc radius R_0)

jet formation

Experiments in the non-linear regime

(perturbations *a* comparable to disc radius R_0)

- jet formation
- cusp formation $(m \ge 3)$

Experiments in the non-linear regime

(perturbations a comparable to disc radius R_0)

- jet formation
- cusp formation $(m \ge 3)$
- subcavities

A side view (*m*=20, 10% perturbation)

A side view (*m*=20, 10% perturbation)

A side view (*m*=20, 10% perturbation)

Understanding the side view pattern

O. Enríquez et al., JFM 701, 40-58 (2012).

Conclusions

Void creation and collapse:

- experiment & BI numerics agree wonderfully
- 2D Rayleigh equation captures essential dynamics
- Airflow becomes supersonic in the neck

Breaking axisymmetry:

- perfect agreement small oscillations with Schmidt's theory
- large perturbations show cusp, jet & subcavity formation
- axisymmetric BI result + Schmidt's theory captures pineapple shape cavity

