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Disclaimer

‣ singularity

‣ (controlled) instabilities

‣ experiments, theory & numerics

‣ air entrapment

Talk by Utkarsh Jain - Wednesday at 16:30



Try this at home



... in our lab
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Experimental setup

linear 
motor

100 
cm

50 cm 50 cm



Disk pulled through interface

Vimpact = 1.0 m/s

Rdisk = 0.03 m

camera @ 1000 fps



void creation

Series of events



void creation

Series of events

void collapse

void creation



void creation

Series of events

void collapse

void creation

jet creation at singularity

void collapse



void creation

Series of events

void collapse

void creation

jet creation at singularity

void collapse

air-entrainment 
“giant bubble”

jet creation at singularity



Dimensional Analysis
Relevant parameters: 
‣ disk radius R0 ≈ 2 cm 

‣ disk velocity V ≈ 1 m/s  
‣ gravity g = 9.8 m/s2

‣ density ρ = 1000 kg/m3 
‣ viscosity η = 1.0 mPa s 
‣ surface tension σ = 0.074 Ν/m 

We =
⇢V 2R0

�
⇡ 300

Re =
⇢V R0

⌘
⇡ 20,000

Fr =
V 2

gR0
⇡ 5 (Froude number)

(Weber number)

(Reynolds number)
viscosity unimportant 
⇒ potential flow

inertia and gravity 
dominant



Boundary Integral  
simulations

~r⇥ ~u = 0 ) ~u = ~r'
irrotational (no viscosity):

incom- 
pressible:
~r·~u=0 )
r2' = 0

@'

@t
+ 1

2 |~r'|2 = �gz � �

⇢


Unsteady Bernoulli equation provides time evolution:

r2' = 0

Laplace equation for potential:

is solved as a boundary integral:

'(~x0, t) =

ZZ

@V

h
G(|~x� ~x0|)~r'(~x, t)� '(~x, t)~rG(|~x� ~x0|)

i
· ~dA

(Green’s third identity)



BI simulation vs. experiments
Fr = 3.4 

Fr = 13.6 

No free 
parameter!



Model: Slender cavity limit

→ Neglect axial flow

→ Assume axisymmetry

Flow in horizontal layers:

→ Assume potential flow

needed: equation for   
2D fluid flow in layers



@ur

@t
+ ur

@ur

@r
= �1

⇢

@p

@r
r ur = R Ṙ

2D Rayleigh-Besant equation
Euler equation in 
cylindrical coordinates Continuity equation

R. Bergmann et al, PRL 96, 154505 (2006).

d

dt
(R ˙R) log

R

R1
+

1
2
˙R2

= gzresult 2D Rayleigh 
equation

Integrate with 
boundary 
conditions:

ur = 0
p = p0 + ⇢gz

r = R1r = R(t)
ur = Ṙ(t)
p = p0



Void creation (at microscale)
d

dt
(R ˙R) log

R

R1
+

1
2
˙R2

= gz

gravity 
negligiblelarge

d

dt
(RṘ) =

d2

dt2
( 12R

2) = 0

Void created with  
constant velocity V:

t =
z

V

Impact of a train 
of micro droplets 

(d = 100 µm; 
 V = 12.6 m/s)

BI simulation

) R(t) =
q

2R0Ṙ0(t+ t0)

Parabolic shape !

R(z) =

s

2R0
Ṙ0

V
(z + z0)



Cavity shape (at microscale)

BI simulation vs. 
expected parabolic 

shape

W. Bouwhuis et al, preprint (2014).



Cavity shape (disc impact)

�treach =
z

V
determined by 
impact speed

�t
coll

determined by 
hydrostatic 
pressure
d

dt
(R ˙R) log

R

R1
+

1
2
˙R2

= gz

d

dt
(R ˙R) log

R

R1
+

1
2
˙R2

= gz

Δtreach is short 
Δtcoll is long

Δtreach is long 
Δtcoll is short



Neck radius R(τ)  [experiment]

R/R0

⌧ = (tc � t) [s]

disk passesclosure void



Neck radius scaling
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Neck radius scaling

l
o
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1
0
(
R
/R

0
)

log10 ⌧

What is the expected scaling of the  
neck radius  

close to the singularity?



R(t) ⇠ R0 (tc � t)1/2

})

Back to 2D Rayleigh
d

dt
(R ˙R) log

R

R1
+

1
2
˙R2

= gz

gravity 
negligiblelarge

d

dt
(RṘ) =

d2

dt2
( 12R

2) = 0

R(tc) = 0 (collapse time tc)



Rayleigh scaling in experiment?
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BI simulations
experiments



Rayleigh scaling in experiment?
l
o
g

1
0
(
R
/R

0
)

log10 ⌧

BI simulations
experiments

Scaling exponent α consistently  
higher than 2D Rayleigh:

R ⇠ R0 ⌧
1/2

More elaborate analysis of 2D Rayleigh:  

where γ is the cavity aspect ratio

↵ =

log(

1
4�

2
)

1 + 2 log(

1
4�

2
)

J. M. Gordillo & M. Pérez-Saborid, JFM 562, 303 (2006); J. Eggers et al., PRL 98, 094502 (2007); 
S. Gekle et al, PRE 80, 036305 (2009). 



How about the airflow in the cavity ?

crown splash & 
cavity formation



?

crown splash & 
cavity formation

cavity closure

How about the airflow in the cavity ?

down- or upwards ?



Following smoke particles

Air flow 
reverses!

laser 
sheet

smoke 
particles



Air speed from smoke measurements

?
time



Numerical Modeling 1: Boundary-integral
• Potential flow for both liquid and air: 

irrotational,inviscid, incompressible



Ma > 1 !!

Numerical Modeling 1: Boundary-integral
• Potential flow for both liquid and air: 

irrotational,inviscid, incompressible



Numerical modeling 2: Multiscale
Flow field  

one-dimensional 
@ moment 
of reversal

incompressible 
air

incompre-
ssible 
liquid



Flow field  
one-dimensional 

@ moment 
of reversal

Remove inner 
potential fluid

incompressible 
air

incompre-
ssible 
liquid

Numerical modeling 2: Multiscale



Flow field  
one-dimensional 

@ moment 
of reversal

Remove inner 
potential fluid

Replace with 1D 
Euler fluid

Euler fluid: 
1D, fully compressible

Two-way coupling: surface pressure

incompre-
ssible 
liquid

Numerical modeling 2: Multiscale



Results: Air velocity profile



Results: Air velocity profile



Results: Air velocity profile



Results: Air flow at the cavity neck

cavity diameter 
~ 1mm

„Bernoulli suction“



Results: Air flow at the cavity neck

S. Gekle et al., PRL 104, 024501 (2010).



Breaking axial symmetry

Instead of round disc:



Breaking axial symmetry

Instead of round disc:

use flowershaped discs with perturbation:

 m = 3  m = 5  m = 6 m = 2



Experiment for m = 2

Top view



Experiment for m = 2

Top view



Experiment for m = 2

Top view

cavity shape reverses !



UR = C )

dU

dt
=

U2

R

Basic mechanism: circular cavity

U = Ui

U → ∞

U

air
water

Continuity argument:

U̇ = �UṘ

R
=

U2

R

Ṙ = �U
"( (

(cylindrical cavity)



Continuity argument:
(elliptical cavity)

UR = C

R
R

dU

dt
=

U2

R

Basic mechanism: elliptical cavity

R = local radius  
of curvature

small  
acceleration

large  
acceleration

air
water

This causes  
the reversal !



Experiments in linear regime

• Linear behavior: a << R 
• Disks with 1% 

perturbation 
• Water + powdered milk 

for visualization

m=2 m=3 m=4 m=5 m=6



A bit of theory:

�(r, t) = Q(t) log r + dm(t)r�m
cos(m✓)

corresponds to the flow potential:

@�

@r

����
r=R̄(t)

=
@R

@t
) Q(t) = R̄ ˙̄R ; dm(t) =

�R̄m+1

m

"
ȧm + am

˙̄R

R̄

#The kinematic boundary condition at the cavity wall gives:

⇢


@�

@t
+ 1

2 |~r�|2
�R(t)

R1

= (P1 � P0) + �

Combining with Bernoulli between R∞ and cavity wall R(t) (dynamic b.c.):

L.E. Schmidt, N.C. Keim, W.W. Zhang, and S.R. Nagel,  Nature Phys. 5, 343 (2009)

after linearizing in am provides the amplitude equation:

äm +

 
2 ˙̄R

R̄

!
ȧm +

 
¨̄R

R̄
(1�m)

!
am = 0

R(✓, t) = ¯R(t) + am(t) cos(m✓)

Collapsing cavity with small azimuthal perturbation mode m  
around average R(t):



Inserting 2D Rayleigh scaling

äm +

 
2 ˙̄R

R̄

!
ȧm +

 
¨̄R

R̄
(1�m)

!
am = 0

in the linear amplitude equation 

R̄(t) = C
p

R0V (tc � t)1/2

Using the 2D Rayleigh scaling for the average radius R(t) 

am(

¯R) = am(0) cos

�p
m� 1 log(

¯R/R0) + �
�

we find the solution:

or:
am(t) = am(0) cos

⇣
1
2

p
m� 1 log(tc � t) + e�

⌘

constant amplitude am ⇒  

am/R diverges !
frequency chirps !



R(✓, t) = ¯R(t) + am(t) cos(m✓)

Results (linear regime)



am(

¯R) = am(0) cos

�p
m� 1 log(

¯R/R0) + �
�

Pressure driven

Results (linear regime)



m=3 m=4

m=5 m=6

Linear regime, 1% perturbation



m=6 m=10

m=16 m=20

Linear regime, 1% perturbation



Experiments in the non-linear regime
(perturbations a comparable to disc radius R0)

‣ jet formation m = 2



Experiments in the non-linear regime
(perturbations a comparable to disc radius R0)

‣ jet formation m = 5

‣ cusp formation (m ≥ 3)



Experiments in the non-linear regime
(perturbations a comparable to disc radius R0)

‣ jet formation m = 5

‣ cusp formation (m ≥ 3)
‣ subcavities



A side view (m=20, 10% perturbation)



A side view (m=20, 10% perturbation)



A side view (m=20, 10% perturbation)



Also described by theory?

Understanding the side view pattern

‣ use axisymmetric BI result
R̄(z, t)

‣ in linear amplitude equation

äm +
2 ˙̄R

R̄
ȧm +

¨̄R

R̄
(1�m)am = 0

O. Enríquez et al., JFM 701, 40-58 (2012).



Conclusions

Breaking axisymmetry:
• perfect agreement small oscillations with Schmidt’s theory

• large perturbations show cusp, jet & subcavity formation

• axisymmetric BI result + Schmidt’s theory captures 
 pineapple shape cavity

Void creation and collapse:
• experiment & BI numerics agree wonderfully

• 2D Rayleigh equation captures essential dynamics

• Airflow becomes supersonic in the neck



THANK YOU !


