

Collapse of a (non-)axisymmetric air cavity in water
 Devaraj van der Meer • Oscar Enríquez • Ivo Peters • Stefan Gekle • Laura Schmidt • Utkarsh Jain • Anaïs Gauthier • Detlef Lohse

UNIVERSITY OF TWENTE.

PHYSICS OF FLUIDS

October 17, 2017 - Paris

Disclaimer

- singularity
- (controlled) instabilities
- air entrapment
- experiments, theory \& numerics

Talk by Utkarsh Jain - Wednesday at 16:30

Try this at home

... in our lab

Experimental setup

Disk pulled through interface

$$
\begin{aligned}
& V_{\text {impact }}=1.0 \mathrm{~m} / \mathrm{s} \\
& R_{\text {disk }}=0.03 \mathrm{~m} \\
& \text { camera @ } 1000 \mathrm{fps}
\end{aligned}
$$

Series of events

void creation

Series of events

void creation

void collapse

Series of events

void creation

void collapse
jet creation at singularity

Series of events

void creation
void collapse
jet creation at singularity
air-entrainment "giant bubble"

Dimensional Analysis

Relevant parameters:

- disk radius $R_{0} \approx 2 \mathrm{~cm}$
- density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- disk velocity $V \approx 1 \mathrm{~m} / \mathrm{s}$
- viscosity $\eta=1.0 \mathrm{mPas}$
- gravity $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- surface tension $\sigma=0.074 \mathrm{~N} / \mathrm{m}$

$$
\begin{aligned}
\mathrm{Fr} & =\frac{V^{2}}{g R_{0}} \approx 5 \\
\mathrm{We} & =\frac{\rho V^{2} R_{0}}{\sigma} \approx 300 \\
\mathrm{Re} & =\frac{\rho V R_{0}}{\eta} \approx 20,000
\end{aligned}
$$

(Froude number) inertia and gravity dominant
(Weber number)
(Revnalds number) viscosity unimportant \Rightarrow potential flow
incompressible:
$\vec{\nabla} \cdot \vec{u}=0 \Rightarrow$

$$
\nabla^{2} \varphi=0
$$

Boundary Integral simulations

Laplace equation for potential:

$$
\nabla^{2} \varphi=0
$$

is solved as a boundary integral:
$\varphi\left(\vec{x}_{0}, t\right)=\iint_{\partial V}\left[G\left(\left|\vec{x}-\overrightarrow{x_{0}}\right|\right) \vec{\nabla} \varphi(\vec{x}, t)-\varphi(\vec{x}, t) \vec{\nabla} G\left(\left|\vec{x}-\overrightarrow{x_{0}}\right|\right)\right] \cdot \overrightarrow{d A}$
(Green's third identity)
Unsteady Bernoulli equation provides time evolution:

$$
\frac{\partial \varphi}{\partial t}+\frac{1}{2}|\vec{\nabla} \varphi|^{2}=-g z-\frac{\sigma}{\rho} \kappa
$$

BI simulation vs. experiments

$\mathrm{Fr}=3.4$

$\mathrm{Fr}=13.6$

No free parameter!

Model: Slender cavity limit

Flow in horizontal layers:
\rightarrow Assume potential flow
\rightarrow Assume axisymmetry
\rightarrow Neglect axial flow
needed: equation for 2D fluid flow in layers

2D Rayleigh-Besant equation

Euler equation in cylindrical coordinates

$$
\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}=-\frac{1}{\rho} \frac{\partial p}{\partial r}
$$

Continuity equation

$$
r u_{r}=R \dot{R}
$$

Integrate with boundary conditions:

result $\frac{d}{d t}(R \dot{R}) \log \frac{R}{R_{\infty}}+\frac{1}{2} \dot{R}^{2}=g z$
2D Rayleigh equation
R. Bergmann et al, PRL 96, 154505 (2006).

Void creation (at microscale)

Impact of a train of micro droplets

$$
\begin{aligned}
& (d=100 \mu \mathrm{~m} ; \\
& \mathrm{V}=12.6 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

$$
\begin{gathered}
\frac{d}{d t}(R \dot{R}) \log \frac{R}{R_{\infty}}+\frac{1}{2} \dot{R}^{2}=\underset{\text { large }}{\text { gravity }} \begin{array}{c}
\text { negligible }
\end{array} \\
\frac{d}{d t}(R \dot{R})=\frac{d^{2}}{d t^{2}}\left(\frac{1}{2} R^{2}\right)=0 \\
\Rightarrow R(t)=\sqrt{2 R_{0} \dot{R}_{0}\left(t+t_{0}\right)}
\end{gathered}
$$

Void created with constant velocity V :

$$
t=\frac{z}{V}
$$

$$
R(z)=\sqrt{2 R_{0} \frac{\dot{R}_{0}}{V}\left(z+z_{0}\right)}
$$

Parabolic shape!

Cavity shape (at microscale)

W. Bouwhuis et al, preprint (2014).

Cavity shape (disc impact)

$\Delta t_{\text {reach }}=\frac{z}{V}$ determined by impact speed
$\Delta t_{\text {coll }}$
determined by hydrostatic pressure $\frac{d}{d t}(R \dot{R}) \log \frac{R}{R_{\infty}}$

Neck radius $R(\tau)$ [experiment]

Neck radius scaling

Neck radius scaling

What is the expected scaling of the neck radius close to the singularity?

$$
\begin{array}{llll}
-2 & -4 & -3 & -2 \\
& & & -1 \\
\log _{10} \tau
\end{array}
$$

Back to 2D Rayleigh

$$
\left.\begin{array}{l}
\frac{d}{d t}(R \dot{R}) \underset{\text { large }}{\log \frac{R}{R_{\infty}}}+\frac{1}{2} \dot{R}^{2}=\underset{\substack{\text { gravity } \\
\text { negligible }}}{ } \\
\frac{d}{d t}(R \dot{R})=\frac{d^{2}}{d t^{2}}\left(\frac{1}{2} R^{2}\right)=0 \\
\left.R\left(t_{c}\right)=0 \quad \text { (collapse time } t_{c}\right)
\end{array}\right\} \Rightarrow
$$

$$
R(t) \sim R_{0}\left(t_{c}-t\right)^{1 / 2}
$$

Rayleigh scaling in experiment?

Rayleigh scaling in experiment?

Scaling exponent α consistently higher than 2D Rayleigh:

$$
R \sim R_{0} \tau^{1 / 2}
$$

0	
$00-1$	$\mathrm{Fr}=163$

More elaborate analysis of 2D Rayleigh:

$$
\alpha=\frac{\log \left(\frac{1}{4} \gamma^{2}\right)}{1+2 \log \left(\frac{1}{4} \gamma^{2}\right)}
$$

where γ is the cavity aspect ratio

$$
\log _{10} \tau
$$

J. M. Gordillo \& M. Pérez-Saborid, JFM 562, 303 (2006); J. Eggers et al., PRL 98, 094502 (2007);
S. Gekle et al, PRE 80, 036305 (2009).

How about the airflow in the cavity ?

crown splash \& cavity formation

How about the airflow in the cavity ?

Following smoke particles

Air speed from smoke measurements

Numerical Modeling 1: Boundary-integral

- Potential flow for both liquid and air: irrotational,inviscid, incompressible

Numerical Modeling 1: Boundary-integral

- Potential flow for both liquid and air: irrotational,inviscid, incompressible

Numerical modeling 2: Multiscale

Numerical modeling 2: Multiscale

Numerical modeling 2: Multiscale

Results: Air velocity profile

Results: Air velocity profile

Results: Air velocity profile

Results: Air flow at the cavity neck

Results: Air flow at the cavity neck

S. Gekle et al., PRL 104, 024501 (2010).

Breaking axial symmetry

Instead of round disc:

Breaking axial symmetry

Instead of round disc:

use flowershaped discs with perturbation:

$m=2$

Experiment for $\boldsymbol{m}=2$

Top view

Experiment for $\boldsymbol{m}=\mathbf{2}$

Top view

Experiment for $\boldsymbol{m}=\mathbf{2}$

Top view

cavity shape reverses!

Basic mechanism: circular cavity

Continuity argument: (cylindrical cavity)

$$
\left.\begin{array}{l}
U R=C \Rightarrow \\
\frac{d U}{d t}=\frac{U^{2}}{R} \\
\left(\dot{U}=-\frac{U \dot{R}}{R}=\frac{U^{2}}{R}\right. \\
\dot{R}=-U
\end{array}\right) .
$$

Basic mechanism: elliptical cavity

Continuity argument: (elliptical cavity)

$$
\begin{aligned}
& U \mathcal{R}=C \\
& \mathcal{R}=\begin{array}{l}
\text { local radius } \\
\text { of curvature }
\end{array} \\
& \frac{d U}{d t}=\frac{U^{2}}{\mathcal{R}}
\end{aligned}
$$

Experiments in linear regime

- Linear behavior: $a \ll R$
- Disks with 1\% perturbation
- Water + powdered milk for visualization

A bit of theory:

Collapsing cavity with small azimuthal perturbation mode m around average $\bar{R}(t)$:

$$
R(\theta, t)=\bar{R}(t)+a_{m}(t) \cos (m \theta)
$$

corresponds to the flow potential:

$$
\phi(r, t)=Q(t) \log r+d_{m}(t) r^{-m} \cos (m \theta)
$$

The kinematic boundary condition at the cavity wall gives:

$$
\left.\frac{\partial \phi}{\partial r}\right|_{r=\bar{R}(t)}=\frac{\partial R}{\partial t} \Rightarrow Q(t)=\bar{R} \dot{\bar{R}} ; \quad d_{m}(t)=\frac{-\bar{R}^{m+1}}{m}\left[\dot{a}_{m}+a_{m} \frac{\dot{\bar{R}}}{\bar{R}}\right]
$$

Combining with Bernoulli between \boldsymbol{R}_{∞} and cavity wall $\boldsymbol{R}(\boldsymbol{t})$ (dynamic b.c.):

$$
\rho\left[\frac{\partial \phi}{\partial t}+\frac{1}{2}|\vec{\nabla} \phi|^{2}\right]_{R_{\infty}}^{R(t)}=\left(P_{\infty}-P_{0}\right)+\ngtr
$$

after linearizing in a_{m} provides the amplitude equation:

$$
\ddot{a}_{m}+\left(\frac{2 \dot{\bar{R}}}{\bar{R}}\right) \dot{a}_{m}+\left(\frac{\ddot{\bar{R}}}{\bar{R}}(1-m)\right) a_{m}=0
$$

L.E. Schmidt, N.C. Keim, W.W. Zhang, and S.R. Nagel, Nature Phys. 5, 343 (2009)

Inserting 2D Rayleigh scaling

Using the 2D Rayleigh scaling for the average radius $\bar{R}(t)$

$$
\bar{R}(t)=C \sqrt{R_{0} V}\left(t_{c}-t\right)^{1 / 2}
$$

in the linear amplitude equation

$$
\ddot{a}_{m}+\left(\frac{2 \dot{\bar{R}}}{\bar{R}}\right) \dot{a}_{m}+\left(\frac{\ddot{\bar{R}}}{\overline{\bar{R}}}(1-m)\right) a_{m}=0
$$

we find the solution:

$$
a_{m}(t)=a_{m}(0) \cos \left(\frac{1}{2} \sqrt{m-1} \log \left(t_{c}-t\right)+\widetilde{\delta}\right)
$$

or:

$$
a_{m}(\bar{R})=a_{m}(0) \cos \left(\sqrt{m-1} \log \left(\bar{R} / R_{0}\right)+\delta\right)
$$

constant amplitude $a_{\mathrm{m}} \Rightarrow$ $a_{\mathrm{m}} / \overline{\boldsymbol{R}}$ diverges !
frequency chirps !

Results (linear regime)

$$
R(\theta, t)=\bar{R}(t)+a_{m}(t) \cos (m \theta)
$$

Results (linear regime)

$$
a_{m}(\bar{R})=a_{m}(0) \cos \left(\sqrt{m-1} \log \left(\bar{R} / R_{0}\right)+\delta\right)
$$

$\bar{R} \approx R_{0}$

Linear regime, 1\% perturbation

Linear regime, 1\% perturbation

Experiments in the non-linear regime

 (perturbations a comparable to disc radius R_{0})- jet formation

Experiments in the non-linear regime

 (perturbations a comparable to disc radius R_{0})- jet formation
- cusp formation ($m \geq 3$)

$$
m=5
$$

Experiments in the non-linear regime

 (perturbations a comparable to disc radius R_{0})- jet formation
- cusp formation ($m \geq 3$)
- subcavities

$$
m=5
$$

A side view ($m=20,10 \%$ perturbation)

A side view (m=20, 10\% perturbation)

A side view (m=20, 10\% perturbation)

Understanding the side view pattern

Also described by theory?

- use axisymmetric BI result $\bar{R}(z, t)$
- in linear amplituo equation

O. Enríquez et al., JFM 701, 40-58 (2012).

Conclusions

Void creation and collapse:

- experiment \& BI numerics agree wonderfully
- 2D Rayleigh equation captures essential dynamics
- Airflow becomes supersonic in the neck

Breaking axisymmetry:

- perfect agreement small oscillations with Schmidt's theory
- large perturbations show cusp, jet \& subcavity formation
- axisymmetric BI result + Schmidt's theory captures pineapple shape cavity

